Advertisement

Applied Biochemistry and Microbiology

, Volume 45, Issue 4, pp 395–400 | Cite as

The introduction of the 9α-hydroxy group into androst-4-en-3,17-dione using a new actinobacterium strain

  • N. V. RodinaEmail author
  • V. A. Andryushina
  • T. S. Stytsenko
  • T. P. Turova
  • R. V. Baslerov
  • A. N. Panteleeva
  • N. E. Voishvillo
Article

Abstract

A 9α-hydrolase activity of a new actinobacterium strain identified as Rhodococcus erythropolis based on the analysis of a 16S rRNA gene sequence (1417 nucleotides) towards androst-4-en-3,17-dione (AD) was studied. In the presence of glucose in the medium, this strain completely transformed AD (4–20 g/l) into 9α-hydroxy-AD over 20–48 h. This culture was able to grow and perform AD 9α-hydroxylation at a concentration of dimethyl formamide up to 9%. Crystalline 9α-hydroxy-AD was isolated with a yield of over 90%.

Keywords

Apply Biochemistry Rhodococcus DMFA Rhodococcus Erythropolis Transformation Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sedlaczek, L., Crit. Revs. Biotechnol,. 1988, vol. 7, no. 3, pp. 187–236.CrossRefGoogle Scholar
  2. 2.
    Akhrem, A.A. and Titov, Yu.A., in Steroidy i mikroorganizmy (Steroids and Microorganisms), Moscow: Nauka, 1972.Google Scholar
  3. 3.
    Bell, A.M., Jones, R.H., Meakins, G.D., Miners, J.O., and Wilkins, A.L., J. Chem. Soc. Perkin Trans., 1975, issue 3, pp. 2040–2042.Google Scholar
  4. 4.
    Dutta, R.K., Roy, M.K., and Singh, H.D., J. Basic Microbiol., 1992, vol. 32, no. 3, pp. 167–176.PubMedCrossRefGoogle Scholar
  5. 5.
    Sebek, O.S., US Patent No. 3 116 220, 1964.Google Scholar
  6. 6.
    Gorovits, M.B., Khristulas, F.S., and Abubakirov, N.K., Khim. Prir. Soedin., 1970, vol. 6, no. 2, pp. 273–275.Google Scholar
  7. 7.
    Voishvillo, N.E., Istomina, Z.I., and Kamernitskii, A.V., Izv. Ros. Akad. Sci., Ser.: Khim., 1994, issue 4, pp. 737–743.Google Scholar
  8. 8.
    Imata, Y. and Takahashi, K., JP Patent No. 79-147998, 1980.Google Scholar
  9. 9.
    Sonomoto, K., Usui, N., Tanaka, A., and Fukui, S., Eur. J. Appl. Microbiol., 1983, vol. 17, no. 4, pp. 203–210.CrossRefGoogle Scholar
  10. 10.
    Kieslich, K., Euras. Patent No. 0 027 829, 1981.Google Scholar
  11. 11.
    Preisig, C.L., Laakso, J.A., Mocek, U.M., Wang, P.T., Bacz, J., and Byng, G., J. Nat. Prod., 2003, vol. 66, no. 3, pp. 350–356.PubMedCrossRefGoogle Scholar
  12. 12.
    Pan, S.C., Semar, J., Junta, B., and Principe, P.A., Biotechnol. Bioeng., 1969, vol. 11, no. 6, pp. 1183–1194.PubMedCrossRefGoogle Scholar
  13. 13.
    Voishvillo, N.E., Turuta, A.M., and Kamernitsky, A.V., Russ. Chem. Bull., 1994, vol. 43, no. 4, pp. 515–537.CrossRefGoogle Scholar
  14. 14.
    Turuta, A.M., Kamernitskii, A.V., Bogdanov, V.S., Komarova, G.V., and Koshcheenko, K.A., Khim.-Farm. Zh., 1990, issue 6, pp. 52–55.Google Scholar
  15. 15.
    Bell, A.M., Boul, A.D., Jones, E.R.H., and Meakins, G.D., J. Chem. Soc. Perkin Trans., 1975, issue 14, pp. 1364–1366.Google Scholar
  16. 16.
    Sato, Y. and Hayakawa, S., J. Org. Chem., 1963, vol. 28, no. 10, pp. 2739–2742.CrossRefGoogle Scholar
  17. 17.
    Sato, Y., Waters, Y.A., and Kaneko, H., J. Org. Chem., 1964, vol. 29, no. 12, pp. 3732–3733.CrossRefGoogle Scholar
  18. 18.
    Atrat, P.G., Koch, B., Szecalla, B., and Hoerhold-Schubert, C., J. Basic Microbiol., 1992, vol. 32, no. 3, pp. 147–157.PubMedCrossRefGoogle Scholar
  19. 19.
    JP Patent No. 80.138395, 1980.Google Scholar
  20. 20.
    Ambrus, G., Maderspach, A., Jekkel, A., Javor, A., and Ilkoy, E., US Patent No. 5112815, 1992.Google Scholar
  21. 21.
    Bokany, J., Albrecht, K., Ambrus, G., Lang, T., and Szabo, I.M., US Patent No. 5 004 695, 1991.Google Scholar
  22. 22.
    Seidel, L. and Hoerhold, C., J. Basic Microbiol., 1992, vol. 32, no. 1, pp. 49–55.PubMedCrossRefGoogle Scholar
  23. 23.
    Marsheck, W.J., Jiu, J., and Wang, T., US Patent No. 4 397 947, 1983.Google Scholar
  24. 24.
    Gorlich, B., FRG Patent No. 1979, Byull. Izobret., No. 2 226 997.Google Scholar
  25. 25.
    Sih, C.J., Biochim. Biophys. Acta, 1962, vol. 62, no. 3, pp. 541–547.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith, L.L, in Terpenoids and Steroids, Overton, K.H., Ed., New York: Academic, 1974, pp. 394–530.CrossRefGoogle Scholar
  27. 27.
    Imada, Y. and Mizuno, S., US Patent No. 4 255 344, 1981.Google Scholar
  28. 28.
    Geize van der, R., Khessels, G., and Deikkheizen, L., RF Patent No. 2 268 935, 2006.Google Scholar
  29. 29.
    Voishvillo, N.E., Rodina, N.V., Andryushina, V.A., Stytsenko, T.S., and Skryabin, K.G., RF Patent, 2007.Google Scholar
  30. 30.
    Bulygina, E.S., Kuznetsov, B.B., Marusina, A.I., Turova, T.P., Kravchenko, I.K., Bykova, S.A., Kolganova, T.V., and Gal’chenko, V.F., Mikrobiologiya, 2002, vol. 70, no. 4, pp. 1–9.Google Scholar
  31. 31.
    Edwards, U., Rogall, T., Bloeker, H., Ende, M.D., and Boettge, E.C., Nucleic Acid Res., 1989, vol. 17, no. 19, pp. 7843–7853.PubMedCrossRefGoogle Scholar
  32. 32.
    Donova, M.V., Applied Biochem. Microbiol., 2007, vol. 43, no. 1, pp. 1–14.CrossRefGoogle Scholar
  33. 33.
    Molnar, I., Choi, K.P., Yamashita, M., and Murooka, Y., Mol. Microbiol., 1995, vol. 15, no. 5, pp. 895–905.PubMedCrossRefGoogle Scholar
  34. 34.
    Stackebrandt, E. and Ebers, J., Microbiology Today, 2006, vol. 33, no. 6, pp. 152–155.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. V. Rodina
    • 1
    Email author
  • V. A. Andryushina
    • 1
  • T. S. Stytsenko
    • 1
  • T. P. Turova
    • 2
  • R. V. Baslerov
    • 1
  • A. N. Panteleeva
    • 1
  • N. E. Voishvillo
    • 1
  1. 1.Bioengineering Center Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Microbiology Russian Academy of SciencesMoscowRussia

Personalised recommendations