Decolorization of anaerobically digested molasses spent wash by Pseudomonas putida



The distillery wastewater (spent wash) contains dark brown colored recalcitrant organic compounds that are not amenable to conventional biological treatment. The characteristic recalcitrance to decolorization is due to the presence of brown melanoidin polymers. In the present study, feasibility of using Pseudomonas putida putida strain U for decolorization of spent wash was demonstrated. Batch cultures of P. putida decolourized spent wash by 24%, twofold higher decolorization was achieved following immobilization in calcium alginate beads. Glucose concentration was critical for decolourization, and improved color removal efficiency was obtained by periodic replenishment of glucose. Decolourization was also observed with lactose or whey as alternative carbon sources. The results of our study suggest that P.putida could be used for biological decolorization of molasses spent washes and that supplementation with whey (a by-product from cheese industry) can offer economical viability to the process.


  1. 1.
    Kumar, V., Wati, L., Nigam, P., Banat, I.M., Yadav, B.S., Singh, D., and Marchant, R., Process Biochem., 1998, vol. 33, pp. 83–88.CrossRefGoogle Scholar
  2. 2.
    Fitzgibbon, F.J., Nigam, P., Singh, D., and Marchant, R., J. Basic Microbiol., 1995, vol. 35, pp. 293–301.PubMedCrossRefGoogle Scholar
  3. 3.
    Agrawal, C.S. and Pandey, G.S., J. Environ. Biol., 1994, vol. 15, pp. 49–53.Google Scholar
  4. 4.
    Migo, V.P., Matsumura, M., Delrosario, E.J., and Kataoka, H.J., Ferment. Bioeng., 1993, vol. 75, pp. 438–442.CrossRefGoogle Scholar
  5. 5.
    Fujita, M., Ike, M., Kawagoshi, Y., and Miyata, N., Water Sci., Technol., 2000, vol. 42! pp. 90–100.Google Scholar
  6. 6.
    Nakajima, T., Shimomura, M., Nomura, N., Chanpornpong, T., and Nakahara, T.J., Biosci. Bioeng., 1999, vol. 87, pp. 119–121.CrossRefGoogle Scholar
  7. 7.
    Singh, D. and Nigam, P., Environmental Biotechnology: Principles and Applications, Moo-Young, M., Anderson, W.A., and Chakrabarty, A.M., Eds., Amsterdam: Kluwer, 1995.Google Scholar
  8. 8.
    Wedzicha, B.L. and Kaputo, M.T., Food Chem., 1992, vol. 43, pp. 359–367.CrossRefGoogle Scholar
  9. 9.
    Kitts, D.D., Wu, C.H., Stich, H.F., and Powrie, W.D., J. Agric. Food Chem., 1993, vol. 41, pp. 2353–2358.CrossRefGoogle Scholar
  10. 10.
    Kumar, V., Wati, L., Nigam, P., Banat, I.M., McMullan, G., Singh, D., and Marchant, R., Biotech. Lett., 1997, vol. 19, pp. 311–313.CrossRefGoogle Scholar
  11. 11.
    Aoshima, I., Tozawa, Y., Ohomomo, S., and Ueda, K., Agric. Biol. Chem., 1995, vol. 49, pp. 2041–2045.Google Scholar
  12. 12.
    Dahiya, J., Singh, D., and Nigam, P., Biores. Technol., 2001, vol. 78, pp. 95–98.CrossRefGoogle Scholar
  13. 13.
    Guimaraes, C., Bento, L.S.M., and Mota, M., Int. Sugar J., 1999, vol. 101, pp. 246–251.Google Scholar
  14. 14.
    Sirianuntapiboon, S., Somchai, P., Sihanonth, P., Atthasampunna, P., and Ohmomo, S., Agric. Biol. Chem., 1988, vol. 52, pp. 393–398.Google Scholar
  15. 15.
    Watanabe, Y., Sugi, R., Tanaka, Y., and Hayshida, S., Agric. Biol. Chem., 1982, vol. 46, pp. 1623–1634.Google Scholar
  16. 16.
    Dehorter, B. and Blondeau, R., FEMS Microbiol. Lett., 1993, vol. 109, pp. 117–122.CrossRefGoogle Scholar
  17. 17.
    Raghukumar, C. and Rivonkar, G., Appl. Microbiol. Biotech., 2001, vol. 55, pp. 510–514.CrossRefGoogle Scholar
  18. 18.
    Hayase, F., Kim, S.B., and Kato, H., Agric. Biol. Chem., 1984, vol. 48, pp. 2711–2717.Google Scholar
  19. 19.
    Patil, N.B. and Kapadnis, B.P., Ind. J. Environ. Health., 1995, vol. 37, pp. 84–88.Google Scholar
  20. 20.
    Backa, S., Gierer, J., Rietberger, T., and Nilsson, T., Holzfurchung, 1993, vol. 47, pp. 181–187.CrossRefGoogle Scholar
  21. 21.
    Guillen, F., Martinez, A.T., and Martinez, M.J., Appl. Microbiol. Biotechnol., 1990, vol. 32, pp. 465–469.CrossRefGoogle Scholar
  22. 22.
    Kalawathi, D.F., Uma, L., and Subramanian, G., Enz. Microb. Technol., 2001, vol. 29, pp. 246–251.CrossRefGoogle Scholar
  23. 23.
    Dahiya, J., Singh, D., and Nigam, P., Biores. Technol., 2001, vol. 78, pp. 111–114.CrossRefGoogle Scholar
  24. 24.
    Ohomomo, S., Yoshikawa, H., Nozaki, K., Nakajima, T., Daengsubha, W., and Nakamura, I., Agric. Biol. Chem., 1988, vol. 52, pp. 2437–2441.Google Scholar
  25. 25.
    Schleissner, C., Reglero, A., and Luengo, J.M., Microbiology, 1997, vol. 143, pp. 1595–1609.PubMedGoogle Scholar
  26. 26.
    Ghosh, M., Ganguli, A., and Tripathi, A.K., Proc. Biochem., 2002, vol. 37, pp. 857–862.CrossRefGoogle Scholar
  27. 27.
    Nelson, N.A., J. Biol. Chem., 1944, vol. 153, pp. 375–380.Google Scholar
  28. 28.
    Fahy, V., Fitzgibbon, F.J., McMullan, G., Singh, D., and Merchant, R., Biotech. Lett., 1997, vol. 19.Google Scholar
  29. 29.
    Miyata, N., Iwahori, K., and Fujita, M.J., Ferment. Bioeng., 1998, vol. 85, pp. 550–553.CrossRefGoogle Scholar
  30. 30.
    Xu, X., Stewart, S.P., and Chen, X., Biotechnol.Bioeng., 1996, vol. 49, pp. 93–100.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2009

Authors and Affiliations

  1. 1.Department of Biotechnology and Environmental Sciences Thapar UniversityPatialaIndia
  2. 2.School of Biotechnology, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations