Applied Biochemistry and Microbiology

, Volume 44, Issue 1, pp 32–37 | Cite as

Inhibition of lipase activity by low-molecular-weight chitosan

  • E. S. Ostanina
  • V. P. Varlamov
  • G. I. Yakovlev
Article

Abstract

Inhibition of enzymatic activity of lipase (EC 3.1.1.3) from the fungus Candida rugosa and wheat (Triticum aestivum L.) germ by low-molecular-weight chitosan with an average molecular weight of 5.7 kDa in reactions of p-nitrophenyl palmitate cleavage was studied. Preincubation of lipases with chitosan, prior to addition of the substrate to solution, showed that equilibrium during the lipase-inhibitor complex formation was reached within 30 min. The inhibition constants for C. rugosa lipase and wheat germ lipase were 1.4 and 0.9 mM, respectively. The contribution of electrostatic interactions to the complex formation between chitosan and lipases is insignificant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brokerkhof, Kh. and Dzhensen, R., in Lipoliticheskie fermenty (Lypolytic Enzymes), Braunshtein, A.E. and Goryachenkova, E.V., Eds., Moscow: Mir, 1978.Google Scholar
  2. 2.
    Poirier, P., Thomas, D., and Bray, G.A., Circulation, 2006, vol. 113, no. 6, pp. 898–918.CrossRefPubMedGoogle Scholar
  3. 3.
    Kubo, M.S. and Hostetter, K.Y., Biochim. Biophys. Acta, 1987, vol. 918, no. 2, pp. 168–174.PubMedGoogle Scholar
  4. 4.
    Kotsovolou, S., Chiou, A., and Vergu, R., J. Org. Chem., 2001, vol. 66, no. 3, pp. 962–967.CrossRefPubMedGoogle Scholar
  5. 5.
    Han, L., Kimura, Y., and Kawashima, M., Int. J. Obes. Relat. Metab. Disord., 2001, vol. 25, no. 5, pp. 1459–1464.CrossRefPubMedGoogle Scholar
  6. 6.
    Eisenreich, W., Kupfer, E., and Stohler, P., J. Med. Chem., 2003, vol. 46, no. 19, pp. 4209–4212.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhao, H.L. and Kim, Y.S., Arch. Pharm. Res., 2004, vol. 27, no. 10, pp. 968–972.CrossRefPubMedGoogle Scholar
  8. 8.
    Kapranchikov, V.S., Zherebtsov, N.A., and Popova, T.N., Prikl. Biokhim. Mikrobiol., 2004, vol. 40, no. 1, pp. 84–88.Google Scholar
  9. 9.
    Grippa, E., Valla, R., and Battinelli, L., Biosci. Biotechnol. Biochem., 1999, vol. 63, no. 9, pp. 1557–1562.CrossRefPubMedGoogle Scholar
  10. 10.
    Hauptman, J.B., Jeunet, F.S., and Hartmann, D., Am. J. Clin. Nutr., 1992, vol. 55, no. 1, pp. 309–313.Google Scholar
  11. 11.
    Drent, M.L. and van der Veen, E.A., Int. J. Obes. Relat. Metab. Desord., 1993, vol. 17, no. 4, pp. 241–244.Google Scholar
  12. 12.
    Rossner, S., Sjostrom, L., and Noack, R., Obesity Res., 2000, vol. 8, no. 1, pp. 49–61.CrossRefGoogle Scholar
  13. 13.
    Pace, D., Blother, S., and Guerciolini, R., J. Nutr., 2001, vol. 131, no. 6, pp. 1694–1699.PubMedGoogle Scholar
  14. 14.
    Varum, K.M., Holme, H.K., Izume, M.N., and Stokke, B.T., Biochem. Biophys. Acta, 1996, vol. 1291, no. 1, pp. 5–15.PubMedGoogle Scholar
  15. 15.
    Muzzarelli, R.A.A, in Chitin Handbook, Muzzarelli, R.A.A. and Peter, M.G., Eds., Atec: Eur. Chitin Soc., 1997, pp. 165–170.Google Scholar
  16. 16.
    Grochulski, P., Li, Y., and Schrag, I., Protein Sci., 1994, vol. 3, no. 1, pp. 82–91.CrossRefPubMedGoogle Scholar
  17. 17.
    Gopalakrishna, K.N., Kumar, R.R., and Prakash, V., Indian J. Biochem. Biophys., 2002, vol. 39, no. 1, pp. 28–34.Google Scholar
  18. 18.
    Il’ina, A.V., Tatarinova, N.Yu., Tikhonov, V.E., and Varlamov, V.P., Prikl. Biokhim. Mikrobiol., 2000, vol. 36, no. 2, pp. 173–177.PubMedGoogle Scholar
  19. 19.
    Il’ina, A.V., Tkacheva, Yu.V., and Varlamov, V.P., Prikl. Biokhim. Mikrobiol., 2001, vol. 37, no. 1, pp. 132–135.Google Scholar
  20. 20.
    Ikeda, I., Sugano, M., Yoshida, K., Sasaki, K., Ywamoto, Y., and Hatano, K., J. Agric. Food Chem., 1993, vol. 41, no. 2, pp. 431–435.CrossRefGoogle Scholar
  21. 21.
    Gamzazade, A.J., Shlimac, V.M., Skljr, A.M., Stykova, E.V., Pavlova, S.A., and Rogosin, S.V., Acta Polym., 1985, vol. 36, no. 8, pp. 420–424.CrossRefGoogle Scholar
  22. 22.
    Hung, T.H., Giridhaz, R., Chiou, S.H., and Wen-Teng, W., J. Mol. Cat. B: Enzymatic, 2003, vol. 26, no. 1, pp. 69–78.CrossRefGoogle Scholar
  23. 23.
    Devesa, A. and Martinez-Anaya, A., Food Sci. and Technol. Intern, 2001, vol. 7, no. 1, pp. 145–153.Google Scholar
  24. 24.
    Lotracul, P. and Dharmsthiti, S., World J. Microbiol. Biotech, 1997, vol. 13, no. 2, pp. 163–168.CrossRefGoogle Scholar
  25. 25.
    Keleti, T., Basic Enzyme Kinetics, Budapest: Akad Kiado, 1986. Translated under the title Osnovy fermentativnoi kinetiki, Kurganov, B.I., Ed., Moscow: Mir, 1990.Google Scholar
  26. 26.
    Park, C.B. and Raines, R.T., J. Am. Chem. Soc., 2001, vol. 123, no. 46, pp. 11472–11479.CrossRefPubMedGoogle Scholar
  27. 27.
    Pernas, M.A., Lopez, C., and Rua, M.L., FEBS Lett., 2001, vol. 501, no. 1, pp. 87–91.CrossRefPubMedGoogle Scholar
  28. 28.
    Turner, N.A., Needs, E.C., and Khan, J.A., Biotechnol. Bioeng., 2001, vol. 72, no. 1, pp. 108–118.CrossRefPubMedGoogle Scholar
  29. 29.
    Pereira, E.B., Castro, H.F., and De Moraes, F.F., Appl. Biochem. Biotechnol., 2001, vol. 93, no. 3, pp. 739–752.CrossRefGoogle Scholar
  30. 30.
    Smith, B.D., Soellner, M.B., and Raines, R.T., J. Biol. Chem., 2003, vol. 278, no. 23, pp. 20934–20938.CrossRefPubMedGoogle Scholar
  31. 31.
    Waldron, T.T., Schrift, G.L., and Murphy, P., J. Mol. Biol., 2005, vol. 346, no. 3, pp. 895–905.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • E. S. Ostanina
    • 1
  • V. P. Varlamov
    • 1
  • G. I. Yakovlev
    • 2
  1. 1.Bioengineering CenterRussian Academy of SciencesMoscowRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations