Applied Biochemistry and Microbiology

, Volume 43, Issue 4, pp 374–378 | Cite as

Catalytic properties of glucoamylase immobilized on synthetic carbon material Sibunit

  • G. A. Kovalenko
  • L. V. Perminova
  • T. G. Terent’eva
  • G. V. Plaksin


Glucoamylase (commercial preparation Glucavamorin) was immobilized by sorption on a carbon support Sibunit. Starch saccharification by the resulting biocatalyst (dextrin hydrolysis) was studied. Investigation of the effect of adsorptional immobilization on kinetic parameters of glucoamylase, including the rate constant of thermal inactivation, showed that immobilization of Glucavamorin on Sibunit resulted in a thousand-fold increase in glucoamylase stability in comparison with the dissolved enzyme. Presence of the substrate (dextrins) in the reaction mixture had a considerable stabilizing effect. Increase in dextrin concentration increases the thermostability of the immobilized enzyme. The overall factor of glucoamylase stabilization adsorbed on Sibunit with the presence of 53% dextrin solutions in comparison with the dissolved enzyme approximated 105. The biocatalyst for starch saccharification made on the base of Subunit-adsorbed Glucavamorin had a high operational stability. Its half-inactivation time at 60°C exceeded 30 days.


Apply Biochemistry Immobilize Enzyme Dextrin Glucoamylase Activity Mesoporous Carbon Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daniels, M.J., Proc. Eng. Asp. Immobiliz. Cell Syst., 1986, pp. 218–224.Google Scholar
  2. 2.
    Klesov, A.A. and Gerasimas, V.B., Biokhimiya, 1979, vol. 44, no. 6, pp. 1084–1092.Google Scholar
  3. 3.
    Vvedenie v prikladnuyu enzimologiyu (Introduction to Applied Enzymology), Berezin, I.V., Antonov, V.K., and Martinek, K., Eds., Moscow: Mosk. Gos. Univ., 1982, pp. 353, 163.Google Scholar
  4. 4.
    Kovalenko, G.A., Komova, O.V., Simakov, A.V., Perminova, L.V, Khomov, V.V., Borovtsova, O.Yu, and Rudina, N.A., Biotekhnol., 2002, no. 5, pp. 81–93.Google Scholar
  5. 5.
    Kovalenko, G.A., Perminova, L.V., Plaksin, G.V., Chuenko, T.V., Komova, O.V., and Rudina, N.A., Prikl. Biokhim. Mikrobiol., 2006, vol. 42, no. 2, pp. 163–168.PubMedGoogle Scholar
  6. 6.
    Kovalenko, G.A., Semikolenov, V.A., Kuznetsova, E.V., Plaksin, G.V., and Rudina, N.A., Kolloidn. Zh., 1999, vol. 61, no. 6, pp. 787–795.Google Scholar
  7. 7.
    Kovalenko, G.A., Sukhinin, S.V., Simakov, A.V., Perminova, L.V., Komova, O.V., Khomov, V.V., and Borovtsova, O.Yu., Biotekhnol., 2004, no. 1, pp. 83–90.Google Scholar
  8. 8.
    Tekhnologiya krakhmala i krakhmaloproduktov (Technology of Starch and Amyloid Products), Tregubov, N.N., Ed., Moscow: Legk. Pishch. Prom., 1981, pp. 312–313.Google Scholar
  9. 9.
    Belki i peptidy (Proteins and Peptides), vol. 1, Ivanov, V.T., and Lipkin, V.N., Eds., Moscow: Nauka, 1995, pp. 187–198.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • G. A. Kovalenko
    • 1
  • L. V. Perminova
    • 1
  • T. G. Terent’eva
    • 1
  • G. V. Plaksin
    • 2
  1. 1.Boreskov Institute of CatalysisSiberian Division of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Hydrocarbon ProcessingSiberian Dívision of the Russian Academy of SciencesOmskRussia

Personalised recommendations