Applied Biochemistry and Microbiology

, Volume 42, Issue 4, pp 369–377

Physiological changes induced in four bacterial strains following oxidative stress

  • S. Baatout
  • P. De Boever
  • M. Mergeay
Article

Abstract

In order to study the behavior and resistance of bacteria under extreme conditions, physiological changes associated with oxidative stress were monitored using flow cytometry. The study was conducted to assess the maintenance of membrane integrity and potential as well as the esterase activity, the intracellular pH and the production of superoxide anions in four bacterial strains (Ralstonia metallidurans, Escherichia coli, Shewanella oneidensis and Deinococcus radiodurans). The strains were chosen for their potential use in bioremediation. Suspensions of R. metallidurans, E. coli, S. oneidensis and D. radiodurans were submitted to 1 h of oxidative stress (H2O2 at various concentrations from 0 to 880 mM). Cell membrane permeability (propidium iodide) and potential (rhodamine-123,3,3’-dihexyloxacarbocyanine iodide), intracellular esterase activity (fluorescein diacetate), intracellular-reactive oxygen species concentration (hydroethidine) and intracellular pH (carboxy-fluorescein diacetate succinimidyl ester 5-(6)) were monitored to evaluate the physiological state and the overall fitness of individual bacterial cells under oxidative stress. The four bacterial strains exhibited varying sensitivities towards H2O2. However, for all the bacterial strains, some physiological damage could already be observed from 13.25 mM H2O2 onwards, in particular with regard to their membrane permeability. Depending on the bacterial strains, moderate to high physiological damage could be observed between 13.25 mM and 220 mM H2O2. The membrane potential, esterase activity, intracellular pH and production of superoxide anion production were in all four strains considerably modified at high H2O2 concentrations. In conclusion, we show that a range of significant physiological alterations occur when bacteria are challenged with H2O2 and fluorescent staining methods coupled with flow cytometry are used for monitoring the changes induced not only by oxidative stress, but also by other stresses like temperature, radiation, pressure, pH, etc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hassett, D.J. and Cohen, M.S., FASEB J., 1989, vol. 3, no. 14, pp. 2574–2582.PubMedGoogle Scholar
  2. 2.
    Miller, R.A. and Britigan, B.E., Clin. Microbiol. Rev., 1997, vol. 10, no. 1, pp. 1–18.PubMedGoogle Scholar
  3. 3.
    Beyer, W., Imlay, J., and Fridovich, M., Prog. Nucleic Acid Res. Mol. Biol., 1991, no. 40, pp. 221–253.Google Scholar
  4. 4.
    Imlay, J.A. and Linn, S., Science, 1988, vol. 3, no. 240 (4857), pp. 1302–1309.Google Scholar
  5. 5.
    Imlay, J.A. and Linn, S.J., Bacteriol., vol. 169, no. 7, pp. 2967–2976.Google Scholar
  6. 6.
    Ma, J.F., Ochsner, U.A., Klotz, M.G., Nanayakkara, V.K., Howell, M.L., Johnson, Z., Posey, J.E., Vasil, M.L., Monaco, J.J., and Hassett, D.J., J. Bacteriol., 1999, vol. 181, no. 12, pp. 3730–3742.PubMedGoogle Scholar
  7. 7.
    Martinez, A. and Kolter, R., J. Bacteriol., 1997, vol. 179, no. 16, pp. 5199–5194.Google Scholar
  8. 8.
    Zhang, Q.M., Takemoto, T., Mito, S., and Yonei, S., J. Radiat. Res. (Tokyo), 1996, vol. 37, pp. 171–176.CrossRefGoogle Scholar
  9. 9.
    Porter, J., Deere, D., Pickup, R., and Edwards, C., Cytometry, 1996, vol. 23, no. 2, pp. 91–96.PubMedCrossRefGoogle Scholar
  10. 10.
    Davey, H.M., and Kell, D.B., Microbiol. Rev., 1996, vol. 60, no. 4, pp. 641–696.PubMedGoogle Scholar
  11. 11.
    Caron, N.G., Stephens, P.J., Hewitt, C.J., Powell, J.R., and Badley, R.A., J. Microbiol. Methods, 2000, vol. 42, no. 1, pp. 97–114.CrossRefGoogle Scholar
  12. 12.
    Barrientos, A., Arroyo, J., Canton, R., Nombela, C., and Perez, S.M., Clin. Microbiol. Rev., 2000, vol. 13, no. 2, pp. 167–195.CrossRefGoogle Scholar
  13. 13.
    Rego, V.J., Lebaron, P., and Caron, N.G., FEMS Microbiol. Rev., 2000, vol. 24, no. 4, pp. 429–448.CrossRefGoogle Scholar
  14. 14.
    Kaprelyants, A.S. and Kell, D.B., J. Appl. Bacteriol., 1992, vol. 72, pp. 410–422.Google Scholar
  15. 15.
    Kaprelyants, A.S., and Kell, D.B.J., Microbiol. Methods, 1993, vol. 17, pp. 115–122.CrossRefGoogle Scholar
  16. 16.
    Porter, J., Edwards, C., and Pickup, R.W., J. Appl. Bacteriol., 1995, vol. 79, no. 4, pp. 399–408.PubMedGoogle Scholar
  17. 17.
    Amoros, L.R., Castel, S., Riu, C.J., and Rego, V.J., Cytometry, 1997, vol. 1, no. 29(4), pp. pp.298–305.CrossRefGoogle Scholar
  18. 18.
    Hewitt, C.J., Caron, N.G., Nienow, A.W., and McFarlane, C.M.J., Biotechnol., 1999, vol. 75, nos. 2–3, pp. 251–264.Google Scholar
  19. 19.
    Williams, I., Paul, F., Lloyd, D., Jepras, R., Critchley, I., Newman, M., Warrack, J., Giokarini, T., Hayes, A.J., Randerson, P.F., and Venables, W.A., Microbiology, 1999, vol. 145, no. 6, pp. 1325–1333.PubMedCrossRefGoogle Scholar
  20. 20.
    Stephens, P.J., Druggan, P., and Caron, N.G., Int. J. Food Microbiol., 2000, vol. 25, nos. (2–3), pp. 269–285.CrossRefGoogle Scholar
  21. 21.
    Allman, R., Hann, A.C., Phillips, A.P., Martin, K.L., and Lloyd, D., Cytometry, 1990, vol. 11, no. 7, pp. 822–831.PubMedCrossRefGoogle Scholar
  22. 22.
    Caron, N.G. and Badley, R.A., Flow Cytometry in Applications in Cell Culture, Al-Rubeai, M., and Emery, A.N., eds., New York: Marcel Dekker, 1996, pp. 257–290.Google Scholar
  23. 23.
    Diaper, J.P., Tither, K., and Edwards, C., Appl. Microbiol. Biotechnol., 1992, no. 38(2), pp. 268–272.PubMedCrossRefGoogle Scholar
  24. 24.
    Haugland, R.P., Handbook of Fluorescent Probes, Larison, K.D., Ed., Eugene, Molecular Probes Ins., 1992.Google Scholar
  25. 25.
    Mitchell, P., Biol. Rev. Camb. Philos. Soc., 1966, vol. 41, no. 3, pp. 445–502.PubMedCrossRefGoogle Scholar
  26. 26.
    Peterkofsky, A., and Gazdar, C., Proc. Natl. Acad. Sci. U.S.A., 1979, vol. 76, no. 3, pp. 1099–1103.PubMedCrossRefGoogle Scholar
  27. 27.
    Ordal, G.W., Crit. Rev. Microbiol., 1985, vol. 12, no. 2, pp. 95–130.PubMedGoogle Scholar
  28. 28.
    Rosberg, M.K., Scott, D.R., Rex, D., Melchers, K., and Sachs, G., Gastroenterology, 1996, vol. 111, no. 4, pp. 886–900.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • S. Baatout
    • 1
  • P. De Boever
    • 1
  • M. Mergeay
    • 1
  1. 1.Laboratory of Microbiology and Radiobiology SCK @ CENBelgian Nuclear Research CentreMolBelgium

Personalised recommendations