Skip to main content
Log in

Oithona davisae: Naturalization in the Black Sea, Interannual and Seasonal Dynamics, and Effect on the Structure of the Planktonic Copepod Community

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

Naturalization of the invasive copepod Oithona davisae is examined based on long-term (2003–2014) routine observations of zooplankton in Sevastopol Bay (the Black Sea). The study analyzes inter-annual and seasonal variability of the species and their impact on the native copepod community. The invasion of O. davisae and their undoubted dominance in terms of abundance have been shown to alter the community structure, while not causing a decline in abundance of native species, except the earlier Black Sea invader Acartia tonsa. A significant decline in A. tonsa numbers over the phases of establishment and naturalization of O. davisae indicates competition between the species. It has been demonstrated that O. davisae have gained a competitive advantage over A. tonsa, which ensured the rapid spread of the former across the Black Sea, acclimatization to the new habitat, and successful competition over native species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. A. Berezina, “The reasons, features, and consequences of distribution of alien species of amphipods in aquatic ecosystems of Europe,” in Biological invasions in Aquatic and Terrestrial Ecosystems (KMK, Moscow, 2004), pp. 254–268.

    Google Scholar 

  2. A. D. Gubanova, I. G. Polikarpov, M. A. Saburova, et al., “Long-term dynamics of mesozooplankton by the example of the Copepoda community in Sevastopol Bay (1976–1996),” Oceanology (Engl. Transl.) 42, 512–520 (2002).

  3. A. D. Gubanova, “Long-term changes in species composition and abundance of copepods of genus Acartia Dana in Sevastopol Bay,” in Modern Biological Diversity of Coastal Waters of Crimea (Black Sea) (EKOSI-Gidrofizika, Sevastopol, 2003), pp. 94–103.

  4. Yu. A. Zagorodnyaya, “Oithona brevicornis in Sevastopol Bay: eventuality or new invader in the Black Sea?” Morsk. Ekol. Zh., No. 61, 43 (2002).

  5. E. Odum, Fundamentals of Ecology (W.B. Saunders, Philadelphia, 1953; Mir, Moscow, 1975).

  6. G. A. Finenko, Z. A. Romanova, G. I. Abolmasova, et al., “Ctenophores-invaders and their role in the trophic dynamics of the planktonic community in the coastal regions off the Crimean coasts of the Black Sea (Sevastopol Bay),” Oceanology (Engl. Transl.) 46, 472–482 (2006).

  7. R. Almeda, M. Alcaraz, A. Calbet, et al., “Metabolic rates and carbon budget of early developmental stages of the marine cyclopoid copepod Oithona davisae,” Limnol. Oceanogr. 56, 403–414 (2011).

    Article  Google Scholar 

  8. D. Altukhov, “Distribution of Oithona brevicornis (Copepoda: Cyclopoida) population along the Crimean coast,” Morsk. Ekol. Zh. 9 (1), 71 (2010).

    Google Scholar 

  9. D. Altukhov, A. Gubanova, and V. Mukhanov, “New invasive copepod Oithona davisae Ferrari and Orsi, 1984: seasonal dynamics in Sevastopol Bay and expansion along the Black Sea coasts,” Mar. Ecol. 35, 28–34 (2014).

    Article  Google Scholar 

  10. G. Boxshall, “Alien species in European coastal waters,” Aquat. Invasions 2, 407–410 (2007).

    Article  Google Scholar 

  11. A. Cornils and B. Wend-Heckmann, “First report of the planktonic copepod Oithona davisae in the northern Wadden Sea (North Sea): Evidence for recent invasion?” Helgoland Mar. Res. 69, 243–248 (2015).

    Article  Google Scholar 

  12. M. Elliott, “Biological pollutants and biological pollution––an increasing cause for concern,” Mar. Poll. Bull. 46, 275–280 (2003).

    Article  Google Scholar 

  13. C. S. Elton, The Ecology of Invasions by Animals and Plants (Methuen, London, 1958).

    Book  Google Scholar 

  14. F. Ferrari and J. Orsi, “Oithona davisae, new species, and Limnoithona sinensis (Burckhardt, 1912) (Copepoda: Oithonidae) from the Sacramento–San Joaquin estuary, California,” J. Crustacean Biol. 4, 106–126 (1984).

    Article  Google Scholar 

  15. D. J. Gifford and M. J. Dagg, “Feeding of the estuarine copepod Acartia tonsa Dana: Carnivory vs. herbivory in natural microplankton assemblages,” Bull. Mar. Sci. 43, 458–468 (1988).

    Google Scholar 

  16. A. Gubanova and D. Altukhov, “Establishment of O-ithona brevicornis Giesbrecht, 1892 (Copepoda: C-yclopoida) in the Black Sea,” Aquat. Invasions 2, 407–410 (2007).

    Article  Google Scholar 

  17. A. Gubanova, D. Altukhov, E. Popova, et al., Trends and changes in mesozooplankton of the Black Sea coastal area as the food source of fish larvae,” in Proceedings of the International Conference Marine Research Horizon 2020, Varna, Bulgaria, September 17–20,2013, Abstracts of Papers (Helix, Varna, 2013), p. 144.

  18. A. D. Gubanova, D. A. Altukhov, K. Stefanova, et al., “Species composition of Black Sea marine planktonic copepods,” J. Mar. Syst. 135, 44–52 (2014).

    Article  Google Scholar 

  19. R. M. Hammer, “Scanning electron microscope study of the spermatophore of Acartia tonsa (Copepoda: Calanoida),” Trans. Am. Microsc. Soc. 97, 386–389 (1978).

    Article  Google Scholar 

  20. J. Heuschele and T. Kiørboe, “The smell of virgins. Mating status of females affects male swimming behavior in Oithona davisae,” J. Plankton Res. 34, 929–935 (2012).

    Article  Google Scholar 

  21. ICES Zooplankton Methodology Manual, Ed. by R. P. Haris, (Academic, London, 2000).

    Google Scholar 

  22. P. Jonsson and P. Tiselius, “Feeding behavior, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates,” Mar. Ecol.: Prog. Ser. 60, 35–44 (1990).

    Article  Google Scholar 

  23. A. Kideys, “Fall and rise of the Black Sea ecosystem,” Science 297, 1482–1483 (2002).

    Article  Google Scholar 

  24. A. E. Kideys, A. Roohi, S. Bagheri, et al., “Impacts of invasive ctenophores on the fisheries of the Black Sea and Caspian Sea,” Oceanography 18, 76–85 (2005).

    Article  Google Scholar 

  25. V. Mihneva and K. Stefanova, “The non-native copepod Oithona davisae (Ferrari F.D. and Orsi, 1984) in the Western Black Sea: seasonal and annual abundance variability,” BioInvasions Rec. 2, 119–124 (2013).

    Article  Google Scholar 

  26. G. A. Paffenhofer and D. E. Stearnsb, “Why is Acartia tonsa (Copepoda: Calanoida) restricted to nearshore environments?” Mar. Ecol.: Prog. Ser. 42, 33–38 (1988).

    Article  Google Scholar 

  27. E. Saiz, A. Calbet, and E. Broglio, “Effects of small-scale turbulence on copepods: The case of Oithona davisae,” Limnol Oceanogr. 48, 1304–1311 (2003).

    Article  Google Scholar 

  28. E. Saiz, K. Griffell, A. Calbet, et al., “Feeding rates and prey: predator size ratios of the nauplii and adult females of the marine cyclopoid copepod Oithona davisae,” Limnol. Oceanogr. 59, 2077–2088 (2014).

    Article  Google Scholar 

  29. T. Shvelidze, “First record of Oithona davisae Ferrari and Orsi, 1984 (Copepoda, Cyclopoida) and seasonal variations in the Georgian Black Sea coast,” Acad. J. Sci. Res. 4, 424–428 (2016).

    Google Scholar 

  30. D. K. Stoecker and D. A. Egloff, “Predation by Acartia tonsa Dana on planktonic ciliates and rotifers,” J. Exp. Mar. Biol. Ecol. 110, 53–68 (1987).

    Article  Google Scholar 

  31. L. Svetlichny, E. Gubareva, A. Khanaychenko, et al., “Adaptive strategy of thermophilic Oithona davisae in the cold Black Sea environment,” Turk. J. Fish. Aquat. Sci. 16, 77–90 (2016).

    Google Scholar 

  32. A. Temnykh and S. Nishida, “New record of copepod Oithona davisae Ferrari and Orsi in the Black Sea with notes on the identity of “Oithona brevicornis,” Aquat. Invasions 7, 425–431 (2012).

    Article  Google Scholar 

  33. J. T. Turner, “The importance of small planktonic copepods and their roles in pelagic marine food webs,” Zool. Stud. 43, 255–266 (2004).

    Google Scholar 

  34. H. Ueda, “Horizontal distributions of planktonic copepods in inlet waters,” in Proceedings of the Fourth International Conference on Copepoda, Ed. by S.-I. Uye, S. Nishida, and J.-S. Ho (Plankton Society of Japan, Hiroshima, 1991), pp. 143–160.

  35. F. Ustun and T. Kurt, “First report of the occurrence of Oithona davisae Ferrari F.D. & Orsi, 1984 (Copepoda: Oithonidae) in the Southern Black Sea, Turkey,” Turk. J. Fish. Aquat. Sci. 16, 413–420 (2016).

    Article  Google Scholar 

  36. S. Uye and K. Sano, “Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet,” Mar. Ecol.: Prog. Ser. 118, 121–128 (1995).

    Article  Google Scholar 

  37. S. Uye and K. Sano, “Seasonal variations in biomass, growth rate and production rate of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet,” Mar. Ecol.: Prog. Ser. 163, 37–44 (1998).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.V. Dovgal’, Prof., Dr. Sci. (Bio.), for his valuable contribution and helpful discussion.

Funding

This work was supported as part of the research of a state task of the Kovalevsky Institute of Biology of the Southern Seas (registration no. АААА–А18–118020790229–7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Gubanova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubanova, A.D., Garbazey, O.A., Popova, E.V. et al. Oithona davisae: Naturalization in the Black Sea, Interannual and Seasonal Dynamics, and Effect on the Structure of the Planktonic Copepod Community. Oceanology 59, 912–919 (2019). https://doi.org/10.1134/S0001437019060079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437019060079

Keywords:

Navigation