, Volume 58, Issue 6, pp 909–917 | Cite as

Seasonal Dynamics of Microbial Processes in Bottom Sediments of the Sevastopol Coastal Area

  • T. V. MalakhovaEmail author
  • T. A. Kanapatskiy
  • I. G. Sidorov
  • I. I. Rusanov
  • L. V. Malakhova
  • V. Yu. Proskurnin
  • N. V. Pimenov


A seasonal study of microbial methane oxidation (MO) and sulfate reduction (SR) processes in bottom sediments was carried out at five stations in the estuarian Sevastopol coastal area, which differed in their sedimentation and geochemical conditions. High methane concentrations in bottom sediments, as well as accordingly high MO rates, were obtained at stations marked by high organic carbon (Corg) concentrations. The dependence of these values was found to be exponential, whereas for SR, the amount of organic carbon was not the limiting factor. For the studied stations, the integral SR rates ranged from 2.9 to 11.3 mmol m–2 day–1. The trends of the SR rate have opposite directions for the open and closed parts of the sea: SR decreased during study period at the center of the bay, while in the open sea area it increased. The MO rates varied in a wide range from 0.0001 to 3.6 mmol m–2 day–1; the highest were obtained in Corg-rich sediments of the central part of the bay. Only at one station, where the mean annual Corg content in sediments reached 3.39%, did the methane concentration in sediment pore water exceed the calculated solubility.



The authors thank E.E. Zakharov of the Winogradsky Institute of Microbiology, Biotechnology Research Center, Russian Academy of Sciences, for radioisotope measurements of the SR and MO rates.

The study was supported by the government assignment for the A.O. Kovalevsky Institute of Marine Biological Research of RAS entitled “Molismological and biogeochemical fundamentals of marine ecosystems homeostasis” no. АААА-А18-118020890090-2 as well as by the Russian Foundation for Basic Research within the project no. 16-35-00396 mol_a. The measurements was carried out using the equipment of the Shared Resource Center “New Materials and Resource Conservation Technology” (NNSU).


  1. 1.
    A. M. Bol’shakov and A. V. Egorov, “The use of phase-equilibrium degassing techniques in gasometric studies,” Okeanologiya (Moscow) 27, 861–862 (1987).Google Scholar
  2. 2.
    V. N. Egorov, Yu. G. Artemov, and S. B. Gulin, Methane Sips in the Black Sea: Environmental and Ecological Role, Ed. by G. G. Polikarpov (EKOSI-Gidrofizika, Sevastopol, 2011) [in Russian].Google Scholar
  3. 3.
    V. N. Egorov, N. V. Pimenov, T. V. Malakhova, et al., “Biogeochemical characteristics distribution of methane in water and bottom sediments in areas of gas seep emissions in the basin of the Sevastopol bays,” Morsk. Ekol. Zh. 21 (3), 41–52 (2012).Google Scholar
  4. 4.
    T. V. Malakhova, T. A. Kanapatskii, V. N. Egorov, L. V. Malakhova, Yu. G. Artemov, D. B. Evtushenko, S. B. Gulin, and N. V. Pimenov, “Microbial processes and genesis of methane gas jets in the coastal areas of the Crimean Peninsula,” Microbiology (Moscow), 84, 838–845 (2015).CrossRefGoogle Scholar
  5. 5.
    V. I. Myslivets, V. N. Korotaev, A. S. Zverev, et al., “The geomorphology of the bottom of the Sevastopol Bay,” Ekol. Bezop. Pribrezhnoi Shel’fovoi Zon Kompl. Ispol’z. Resur. Shel’fa 25 (1), 104–110 (2011).Google Scholar
  6. 6.
    E. I. Ovsyanyi, A. S. Romanov, R. Ya. Min’kovskaya, et al., “The main pollution sources of the marine environment of the Sevastopol area,” Ekol. Bezop. Pribrezhnoi Shel’fovoi Zon Kompl. Ispol’z. Resur. Shel’fa, No. 2, 138–152 (2001).Google Scholar
  7. 7.
    Yu. I. Sorokin, The Black Sea: Environment and Resources (Nauka, Moscow, 1982) [in Russian].Google Scholar
  8. 8.
    F. Abegg and A. Anderson, “The acoustic turbid layer in muddy sediments of Eckernfoerde Bay, Western Baltic: methane concentrations, saturation and bubble characteristics,” Mar. Geol. 137, 137–147 (1997).CrossRefGoogle Scholar
  9. 9.
    E. T. Arning, E. C. Gaucher, W. van Berk, and H.‑M. Schulz, “Hydrogeochemical models locating sulfate-methane transition zone in marine sediments overlying black shales: A new tool to locate biogenic methane?” Mar. Petrol. Geol. 59, 563–574 (2015).CrossRefGoogle Scholar
  10. 10.
    V. N. Blinova, M. Ivanov, and G. Bohrmann, “Hydrocarbon gases in deposits from mud volcanoes in the Sorokin Trough, northeastern Black Sea,” Geo-Mar. Lett. 23 (3–4), 250–257 (2003).CrossRefGoogle Scholar
  11. 11.
    A. Boetius, K. Ravenschlag, C. J. Schubert, et al., “A marine microbial consortium apparently mediating anaerobic oxidation of methane,” Nature 407 (5), 623–627 (2000).CrossRefGoogle Scholar
  12. 12.
    D. J. Burdige, “Preservation of organic matter in marine sediments: controls, mechanisms and an imbalance in sediment organic carbon budgets?” Chem. Rev. 107, 467–485 (2007).CrossRefGoogle Scholar
  13. 13.
    D. E. Canfield, “Factors influencing organic carbon preservation in marine sediments,” Chem. Geol. 114, 315–329 (1994).CrossRefGoogle Scholar
  14. 14.
    S. B. Gulin, A. Aarkrog, G. G. Polikarpov, et al., “Chronological study of 137Cs input to the Black Sea deep and shelf sediments,” Radioprotection 32 (2), 257–262 (1997).Google Scholar
  15. 15.
    S. B. Gulin, L. V. Gulina, I. G. Sidorov, et al., “40K in the Black Sea: a proxy to estimate biogenic sedimentation,” J. Environ. Radioact. 134, 21–26 (2014).CrossRefGoogle Scholar
  16. 16.
    T. M. Hoehler, M. J. Alperin, D. B. Albert, and C. S. Martens, “Field and laboratory studies of methane oxidation in an anoxic marine sediments: evidence for a methanogen-sulfate reducer consortium,” Global Geochem. Cycle 8 (4), 451–463 (1994).CrossRefGoogle Scholar
  17. 17.
    M. V. Ivanov, N. V. Pimenov, I. I. Rusanov, and A. Yu. Lein, “Microbial processes of the methane cycle at the north-western shelf of the Black Sea,” Estuarine, Coastal Shelf Sci. 54, 589–599 (2002).CrossRefGoogle Scholar
  18. 18.
    B. B. Jørgensen and S. Kasten, “Sulfur cycling and methane oxidation,” in Marine Geochemistry, Ed. by H. D. Schulz and M. Zabel (Springer-Verlag, Berlin, 2006), pp. 271–309.Google Scholar
  19. 19.
    B. B. Jørgensen, “Bacteria and marine biogeochemistry,” in Marine Geochemistry, Ed. by H. D. Schulz and M. Zabel (Springer-Verlag, Berlin, 2006), pp. 169–206.Google Scholar
  20. 20.
    B. B. Jørgensen, et al., “Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition,” Mar. Ecol.: Prog. Ser. 59, 39–54 (1990).CrossRefGoogle Scholar
  21. 21.
    D. E. LaRowe and P. van Cappellen, “Degradation of natural organic matter: a thermodynamic analysis,” Geochim. Cosmochim. Acta 75, 2030–2042 (2011).CrossRefGoogle Scholar
  22. 22.
    L. V. Malakhova, V. N. Egorov, T. V. Malakhova, et al., “Methane in the Sevastopol coastal area, Black Sea,” Geo-Mar. Lett. 3 (3–4), 391–398 (2010).CrossRefGoogle Scholar
  23. 23.
    T. V. Malakhova, L. V. Malakhova, N. V. Pimenov, et al., “The biogeochemical cycling of methane in the Sevastopol coastal area, Black Sea,” in Methane in the Environment: Occurrence, Uses and Production (Nova Science, New York, 2013), pp. 61–79.Google Scholar
  24. 24.
    N. V. Pimenov, V. N. Egorov, T. A. Kanapatskii, et al., “Sulfate reduction and microbial processes of the methane cycle in the sediments of the Sevastopol bay,” Microbiology (Moscow) 82, 618–627 (2013).CrossRefGoogle Scholar
  25. 25.
    W. S. Reeburgh, “Oceanic methane biogeochemistry,” Chem. Rev. 107, 486–513 (2007).CrossRefGoogle Scholar
  26. 26.
    M. Römer, H. Sahling, T. Pape, et al., “Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea–the Kerch seep area,” Mar. Geol. 319–322, 57–74 (2012).CrossRefGoogle Scholar
  27. 27.
    O. Schmale, S. E. Beaubien, G. Rehder, et al., “Gas seepage in the Dnepr paleo-delta area (NW–Black Sea) and its regional impact on the water column methane cycle,” J. Mar. Syst. 80, 90–100 (2010).CrossRefGoogle Scholar
  28. 28.
    S. Yamamoto, J. Alcauskas, and Th. Crozier, “Solubility of methane in distilled water and seawater,” J. Chem. Eng. Data 21, 78–80 (1976).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • T. V. Malakhova
    • 1
    Email author
  • T. A. Kanapatskiy
    • 2
  • I. G. Sidorov
    • 1
  • I. I. Rusanov
    • 2
  • L. V. Malakhova
    • 1
  • V. Yu. Proskurnin
    • 1
  • N. V. Pimenov
    • 2
  1. 1.Kovalevsky Institute of Marine Biology Research, Russian Academy of SciencesSevastopolRussia
  2. 2.Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscowRussia

Personalised recommendations