Advertisement

Oceanology

, Volume 58, Issue 5, pp 652–660 | Cite as

Mechanism for the Formation of Temperature Anomalies in the Upper Layer of the North Atlantic

  • A. B. Polonsky
  • P. A. Sukhonos
Marine Physics
  • 12 Downloads

Abstract

ORA-S3 oceanological reanalysis data for 1959–2011 is applied to analyze the role different factors play in forming advective heat transfer anomalies on an interannual–decadal scale in the upper mixed layer of the North Atlantic. Regions are revealed in which horizontal heat advection anomalies are determined by variations in current intensity, temperature gradients, and their joint influence. It is demonstrated that the contribution of different mechanisms responsible for advective heat transfer anomalies in the upper mixed layer to the total anomalies of advective origin varies fundamentally from one current to another in the North Atlantic. In the Gulf Stream area (after it separates from the continental slope), horizontal heat advection anomalies in the upper mixed layer result mainly from fluctuations in current intensity, while in the Caribbean Current and the Gulf Stream area (until its separation), they result from variations in the horizontal temperature gradients in the upper mixed layer. In the Labrador Current, both of these mechanisms have the same sign and approximately the same absolute values. In the East Greenland Current, they compensate each other. The contribution of anomalies in horizontal temperature gradients transferred by anomalous currents to the formation of heat transfer anomalies in the upper layer of the North Atlantic are, on the whole, relatively small throughout the water area. The areas of the North Atlantic and West Greenland currents are exceptions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications (Holden Day, San Francisco, 1968; Mir, Moscow, 1971).Google Scholar
  2. 2.
    G. F. Dzhiganshin and A. B. Polonsky, “Low frequency variability of Gulfstream spends: description and mechanisms,” Morsk. Gidrofiz. Zh., No. 3, 30–49 (2009).Google Scholar
  3. 3.
    A. G. Kolesnikov, I. L. Isaev, L. S. Isaeva, et al., “Microstructure of temperature field of the ocean surface,” Tr. Morsk. Gidrofiz. Inst., Akad. Nauk USSR 35, 3–12 (1966).Google Scholar
  4. 4.
    V. G. Kort, “Large-scale interaction of the ocean and atmosphere,” Okeanologiya (Moscow) 10, 222–240 (1970).Google Scholar
  5. 5.
    Dynamics and Forecast of Large-Scale Temperature Anomalies of the Ocean Surface: Statistical Approach, Ed. by L. I. Piterbarg (Gidrometeoizdat, Leningrad, 1989) [in Russian]. ISBN 5-286-00116-5.Google Scholar
  6. 6.
    A. B. Polonskii, “Interdecadal variability in the oceanatmosphere system,” Russ. Meteorol. Hydrol., No. 5, 37–44 (1998).Google Scholar
  7. 7.
    A. B. Polonsky, Role of Ocean in Climate Change (Naukova Dumka, Kyiv, 2008) [in Russian].Google Scholar
  8. 8.
    A. B. Polonskii and A. S. Kuzmin, “Decadal variability of hydrometeorological elements in the North Atlantic,” Russ. Meteorol. Hydrol., No. 9, 51–63 (2000).Google Scholar
  9. 9.
    A. B. Polonsky and P. A. Sukhonos, “Evaluation of the heat balance constituents of the upper mixed layer in the North Atlantic,” Izv., Atmos. Ocean. Phys. 52, 649–658 (2016).CrossRefGoogle Scholar
  10. 10.
    H. Stommel, The Gulf Stream: A Physical and Dynamical Description (University of California Press, Berkeley, 1958; Izd. Inostrannoi Literatury, Moscow, 1963).Google Scholar
  11. 11.
    V. F. Sukhovei, Variability of Hydrological Conditions in Atlantic Ocean (Naukova Dumka, Kiev, 1977) [in Russian].Google Scholar
  12. 12.
    M. A. Balmaseda, A. Vidard, and D. L. T. Anderson, “The ECMWF ocean analysis system ORA-S3,” Mon. Weather Rev. 136 (8), 3018–3034 (2008). doi 10.1175/2008MWR2433.1CrossRefGoogle Scholar
  13. 13.
    P. Chang, L. Ji, and R. Saravanan, “A hybrid coupled model study of tropical Atlantic variability,” J. Clim. 14 (3), 361–390 (2001).CrossRefGoogle Scholar
  14. 14.
    G. A. Chepurin and J. A. Carton, “Subarctic and Arctic sea surface temperature and its relation to ocean heat content 1982–2010,” J. Geophys. Res.: Oceans 117, C06019 (2012). doi 10.1029/2011JC007770CrossRefGoogle Scholar
  15. 15.
    R. G. Curry and M. S. McCartney, “Ocean gyre circulation changes associated with the North Atlantic oscillation,” J. Phys. Oceanogr. 31 (12), 3374–3400 (2001).CrossRefGoogle Scholar
  16. 16.
    T. L. Delworth and R. J. Greatbatch, “Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing,” J. Clim. 13 (9), 1481–1495 (2000).CrossRefGoogle Scholar
  17. 17.
    S. Dong and K. A. Kelly, “Heat budget in the Gulf Stream region: The importance of heat storage and advection,” J. Phys. Oceanogr. 34 (5), 1214–1231 (2004).CrossRefGoogle Scholar
  18. 18.
    C. Eden and J. Willebrand, “Mechanism of interannual to decadal variability of the North Atlantic circulation,” J. Clim. 14 (10), 2266–2280 (2001).CrossRefGoogle Scholar
  19. 19.
    A. T. Evan, D. J. Vimont, A. K. Heidinger, et al., “The role of aerosols in the evolution of tropical North Atlantic Ocean temperature anomalies,” Science 324 (5928), 778–781 (2009). doi 10.1126/science.1167404CrossRefGoogle Scholar
  20. 20.
    G. R. Foltz and M. J. McPhaden, “The role of oceanic heat advection in the evolution of Tropical North and South Atlantic SST anomalies,” J. Clim. 19 (23), 6122–6138 (2006).CrossRefGoogle Scholar
  21. 21.
    A. Grötzner, M. Latif, and T. P. Barnett, “A decadal climate cycle in the North Atlantic Ocean as simulated by the ECHO coupled GCM,” J. Clim. 11 (5), 831–847 (1998).CrossRefGoogle Scholar
  22. 22.
    S. K. Gulev, M. Latif, N. Keenlyside, et al., “North Atlantic Ocean control on surface heat flux on multidecadal timescales,” Nature 499 (7459), 464–467 (2013). doi 10.1038/nature12268CrossRefGoogle Scholar
  23. 23.
    S. Hakkinen, “Decadal air-sea interaction in the North Atlantic based on observations and modeling results,” J. Clim. 13 (6), 1195–1219 (2000).CrossRefGoogle Scholar
  24. 24.
    G. R. Halliwell Jr., “Simulation of North Atlantic decadal/multidecadal winter SST anomalies driven by basin-scale atmospheric circulation anomalies,” J. Phys. Oceanogr. 28 (1), 5–21 (1998).CrossRefGoogle Scholar
  25. 25.
    D. V. Hansen and H. F. Bezdek, “On the nature of decadal anomalies in North Atlantic sea surface temperature,” J. Geophys. Res: Ocenas 101 (4), 8749–8758 (1996).CrossRefGoogle Scholar
  26. 26.
    G. Krahmann, M. Visbeck, and G. Reverdin, “Formation and propagation of temperature anomalies along the North Atlantic Current,” J. Phys. Oceanogr. 31 (5), 1287–1303 (2001).CrossRefGoogle Scholar
  27. 27.
    A. G. Ostrovskii and J. Font, “Advection and dissipation rates in the upper ocean mixed layer heat anomaly budget over the North Atlantic in summer,” J. Geophys. Res.: Oceans 108 (12), (2003). doi 10.1029/2003JC001967Google Scholar
  28. 28.
    L. I. Piterbarg and A. G. Ostrovskii, Advection and Diffusion in Random Media, Implications for Sea Surface Temperature Anomalies (Kluwer, Dordrecht, 1997).CrossRefGoogle Scholar
  29. 29.
    S. B. Power, F. Tseitkin, M. Dix, et al., “Stochastic variability at the air-sea interface on decadal timescales,” Geophys. Res. Lett. 22 (19), 2593–2596 (1995).CrossRefGoogle Scholar
  30. 30.
    C. D. Roberts, J. Waters, K. A. Peterson, et al., “Atmosphere drives recent interannual variability of the Atlantic meridional overturning circulation at 26.5° N,” Geophys. Res. Lett. 40 (19), 5164–5170 (2013). doi 10.1002/grl.50930CrossRefGoogle Scholar
  31. 31.
    R. Seager, Y. Kushnir, P. Chang, et al., “Looking for the role of the ocean in tropical Atlantic decadal climate variability,” J. Clim. 14 (5), 638–655 (2001).CrossRefGoogle Scholar
  32. 32.
    R. T. Sutton and M. R. Allen, “Decadal predictability of North Atlantic Sea surface temperature and climate,” Nature 388 (6642), 563–567 (1997). doi 10.1038/41523CrossRefGoogle Scholar
  33. 33.
    G. Yule, “Why do we sometimes get nonsense-correlations between time-series? A study in sampling and the nature of time-series,” J. R. Stat. Soc. 89 (1), 1–63 (1926). doi 10.2307/2341482CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Natural and Technical SystemsSevastopolRussia

Personalised recommendations