Advertisement

Oceanology

, Volume 58, Issue 5, pp 749–759 | Cite as

Marine Tests of a Digital Holographic Module Using a Measuring Technological Platform

  • V. V. DyominEmail author
  • A. L. Olenin
  • I. G. Polovcev
  • D. V. Kamenev
  • A. S. Kozlova
  • A. S. Olshukov
Instruments and Methods
  • 12 Downloads

Abstract

The paper presents the results of marine testing of a digital holographic module for recording and measuring zooplankton. The tests based on the use of measuring-technological platform earlier developed at IO RAS were performed in summer 2016 in the Kara Sea during cruise 66 of the R/V Akademik Mstislav Keldysh. The upper water layer was sensed down to the 240 m horizon, which resulted in successful recording of about 100 Gb of digital holographic frames with reference to continuous depth profiles of electric conductivity in situ. Tests conducted under summer Arctic sea conditions confirmed the validity of the technical solutions. Based on the results, a list of upgrades to the holographic module was compiled for successful implementation of the latter in ocean research.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quantitative Evaluation of Distribution of Marine Plankton, Ed. by M. E. Vinogradov (Nauka, Moscow, 1983) [in Russian].Google Scholar
  2. 2.
    V. V. Dyomin, RF Patent No. 2124194, (1998).Google Scholar
  3. 3.
    V. V. Dyomin and D. V. Kamenev, “Influence of characteristics of the camera used to record digital in-line holograms of particles, on the quality of the reconstructed images,” Russ. Phys. J. 55, 1307–1313 (2013).CrossRefGoogle Scholar
  4. 4.
    V. V. Dyomin and D. V. Kamenev, “Image-quality criteria in the digital holography of particles,” J. Opt. Technol. 79, 208–211 (2012).CrossRefGoogle Scholar
  5. 5.
    V. V. Dyomin and D. V. Kamenev, “Two-dimensional representation of a digital holographic image of the volume of a medium with particles as a method of depicting and processing information concerning the particles,” J. Opt. Technol. 80, 450–456 (2013).CrossRefGoogle Scholar
  6. 6.
    V. V. Dyomin and D. V. Kamenev, “Recognition of plankton particles by images reconstructed from digital holograms,” Opt. Atmos. Okeana 26 (10), 897–903 (2013).Google Scholar
  7. 7.
    V. V. Dyomin and D. V. Kamenev, “Methods of processing and retrieval of information from digital particle holograms and their application,” Radiophys. Quantum Electron. 57, 533–542 (2015).CrossRefGoogle Scholar
  8. 8.
    V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Russ. Phys. J. 58, 1467–1474 (2016).CrossRefGoogle Scholar
  9. 9.
    V. V. Dyomin, A. V. Makarov, and I. G. Polovcev, “Registration of a plankton using a simulator of an immersive holographic chamber,” Opt. Atmos. Okeana 19 (4), 312–318 (2006).Google Scholar
  10. 10.
    V. V. Dyomin and A. S. Olshukov, “Accuracy of determination of the coordinates and reliability of identification of planktonic particles by a two-angle holographic video,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9–3, 38–41 (2010).Google Scholar
  11. 11.
    V. V. Dyomin and A. S. Olshukov, “Digital holographic video for studying biological particles,” J. Opt. Technol. 79, 344–347 (2012).CrossRefGoogle Scholar
  12. 12.
    V. V. Dyomin and A. S. Olshukov, “Improvement of the quality of reconstructed holographic images by extrapolation of digital holograms,” Russ. Phys. J. 58, 1413–1419 (2016).CrossRefGoogle Scholar
  13. 13.
    V. V. Dyomin, A. S. Olshukov, and E. V. Dzyuba, “Digital holographic video for studies of plankton dynamics,” Russ. Phys. J. 53, 857–866 (2011).CrossRefGoogle Scholar
  14. 14.
    V. V. Dyomin, A. S. Olshukov, E. Yu. Naumova, and N. G. Mel’nik, “Digital hologram of plankton,” Opt. Atmos. Okeana 64 (12), 1089–1095 (2008).Google Scholar
  15. 15.
    V. V. Dyomin, I. G. Polovcev, A. V. Makarov, et al., “Immersed holographic chamber for analysis of microparticles: problems and solutions,” Opt. Atmos. Okeana 16 (9), 846–855 (2003).Google Scholar
  16. 16.
    V. V. Dyomin, I. G. Polovcev, and G. V. Simonova, Optical Measurements: Manual, Ed. by I. V. Samokhvalova (Tomsk State Univ., Tomsk, 2014), Vol. 1, pp. 496–508.Google Scholar
  17. 17.
    V. V. Dyomin and S. G. Stepanov, “Holographic analysis of transparent microparticles,” Opt. Atmos. Okeana 11 (7), 671–676 (1998).Google Scholar
  18. 18.
    P. N. Erofeev, A. N. Ramazin, A. E. Shershnev, and D. E. Levashov, “Water stratification in southwestern part of the Black Sea,” in Distribution and Behavior of Marine Plankton Related to the Water Microstructure (Naukova Dumka, Kiev, 1977), pp. 11–15.Google Scholar
  19. 19.
    R. J. Collier, C. B. Burkhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971; Mir, Moscow, 1979).Google Scholar
  20. 20.
    D. E. Levashov, “In situ evaluation of plankton biomass using optical register,” in VIII Congress of Hydrobiological Society of Russian Academy of Sciences, Kaliningrad, September 16–23, 2001, Abstracts of Papers (Atlantic Scientific Research Institute of Fisheries and Oceanography, Kaliningrad, 2001), Vol. 1, pp. 248–249.Google Scholar
  21. 21.
    D. E. Levashov, Procedure of Expedition Studies: Instrumental Methods and Tools for Evaluation of Commercially-Important Environmental Factors (VNIRO, Moscow, 2003) [in Russian].Google Scholar
  22. 22.
    D. E. Levashov and A. I. Zhavoronkov, “Design and engineering of scientific research vessels for ocean fishery,” in X International Conference on Commercial Oceanology, St. Petersburg, May 20–23, 1997 (VNIRO, Moscow, 1997), pp. 76–77.Google Scholar
  23. 23.
    D. E. Levashov, P. A. Mikheichik, A. Yu. Sedov, et al., “Laser analyzer of plankton TRAP-7A for STDprobes,” in XII International Conference on Commercial Oceanology (Atlantic Scientific Research Institute of Fisheries and Oceanography, Kaliningrad, 2002), pp. 146–147.Google Scholar
  24. 24.
    B. A. Nelepo, G. V. Smirnov, and A. B. Shadrin, Integrated Systems for Hydrophysical Studies (Gidrometeoizdat, Leningrad, 1990) [in Russian].Google Scholar
  25. 25.
    A. L. Olenin, Candidate’s Dissertation in Engineering (Shirshov Institute of Oceanography, Russian Academy of Sciences, Moscow, 2012).Google Scholar
  26. 26.
    A. S. Olshukov, A. V. Makarov, and V. A. Mazur, “Digital holography for registration of precipitating particles in liquid,” Izv. Vyssh. Uchebn. Zaved., Fiz. 48 (6), 137–138 (2005).Google Scholar
  27. 27.
    A. N. Ryabov, N. P. Bulanova, V. V. Dyomin, et al., RF Patent No. 131181, Byull. Izobret., No. 22, (2013).Google Scholar
  28. 28.
    G. V. Smirnov, V. N. Eremeev, M. D. Ageev, et al., Oceanology: Research Tools and Methods for Oceanological Studies (Nauka, Moscow, 2005) [in Russian].Google Scholar
  29. 29.
    G. V. Smirnov, G. G. Matishov, A. L. Olenin, et al., “Marine experiments of multichannel measurementtechnological platform,” Vestn. Yuzhn. Nauch. Tsentra 10 (3), 54–60 (2014).Google Scholar
  30. 30.
    G. V. Smirnov and A. L. Olenin, “Marine information systems and new measuring channels for hydrophysical parameters,” Oceanology (Engl. Transl.) 55, 291–295 (2015).Google Scholar
  31. 31.
    G. V. Smirnov and A. L. Olenin, RF Patent No. 2551670, Byull. Izobret., No. 15, (2015).Google Scholar
  32. 32.
    Report on the Part of the Experimental-Design Work “Development and Manufacture of the Measuring Optoelectronic Part of the Experimental-Technological Breadboard of Planktonometer,” Planktonomer-TGU Code, Registration No. 01201268769 (Tomsk State Univ., Tomsk, 2012) [in Russian].Google Scholar
  33. 33.
    L. L. Chislenko, Nomograms for Determination of Weight of Aquatic Organisms by Body Size and Shape (Marine Mesobenthos and Plankton) (Nauka, Leningrad, 1968) [in Russian].Google Scholar
  34. 34.
    A. Gislason and T. Silva, “Comparison between automated analysis of zooplankton using ZooImage and traditional methodology,” J. Plankton Res. 31 (12), 1505–1516 (2009).CrossRefGoogle Scholar
  35. 35.
    K. L. Carder and D. J. Meyers, “Holography of settling particles: shape parameters,” Opt. Eng. 19 (5), 734–738 (1980).CrossRefGoogle Scholar
  36. 36.
    J. A. Dominges-Caballero, N. Loomits, W. Li, et al., “Advanced in plankton imaging using digital holography,” in Adaptive Optics: Analysis and Methods; Computational Optical Sensing and Imaging; Digital Holography and Three Dimensional Imaging; and Signal Recovery and Synthesis (Optical Society of America, Washington, DC, 2007), No. DMB5.Google Scholar
  37. 37.
    V. V. Dyomin and D. V. Kamenev, “Comparison the techniques of finding a best focusing plane of particle image reconstructed from digital hologram,” in EOS Annual Meeting 2012 (EOSAM 2012) “Optical Systems for the Energy and Production Industries (TOM 7),” Aberdeen, Scotland, UK, September 25–28, 2012 (European Optical Society, Joensuu, 2012). ISBN 978-3-9815022-4-4.Google Scholar
  38. 38.
    V. V. Dyomin and D. V. Kamenev, “Investigation of particles located in the water by digital holography,” Proc. SPIE 9771, (2016). https://doi.org/.10.1117/12.2214228.
  39. 39.
    V. V. Dyomin and D. V. Kamenev, “Information extraction from digital holograms of particles,” in Proceedings of a Meeting “Oceans’2016—Shanghai,” Shanghai, China (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2016), pp. 1–5. doi https://doi.org/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7485674&isnumber=7485332.10.1109/OCEANSAP. 2016. 7485674.Google Scholar
  40. 40.
    V. V. Dyomin, D. V. Kamenev, and A. S. Olshukov, “Methods for image enhancement and accuracy increase in the digital holography of particles,” in Proceedings of a Meeting “Oceans’2014—Taipei,” Taipei (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2014), pp. 1–5. doi https://doi.org/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6964536&isnumber=6964280.10.1109/OCEANS-TAIPEI.2014.6964536.Google Scholar
  41. 41.
    V. V. Dyomin and A. S. Olshukov, “Digital holographic video of plankton,” in SPIE XXXI International Symposium on Optical Engineering and Applications “Applications of Digital Image Processing,” Proceedings of SPIE vol. 7073, Ed. by A. G. Tescher (Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 2008), Art. ID 7073 2B [7073-92].Google Scholar
  42. 42.
    V. V. Dyomin and A. S. Olshukov, “Technique for estimation of quality of the particles images reconstructed from digital holograms,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings (Optical Society of America, Washington, DC, 2007), No. DTuB2. ISBN 1-55752-838-1.Google Scholar
  43. 43.
    V. V. Dyomin, A. S. Olshukov, and D. V. Kamenev, “Evaluation of the plankton species coordinates from digital holographic video,” in Proceedings of the MTS/IEEE International Conference “Oceans’11,” Santander, Spain, June 6–9, 2011 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2011), No. 110131–015. ISBN 978-1-4577-0087-3. ISBN 978-1-61284-4577-0088-0/11.Google Scholar
  44. 44.
    V. V. Dyomin, I. G. Polovtsev, A. S. Olshukov, and D. V. Kamenev, “Pilot model of submersible camera for plankton digital holography,” in EOS Annual Meeting 2012 (EOSAM 2012) “Optical Systems for the Energy and Production Industries (TOM 7),” Aberdeen, Scotland, UK, September 25–28, 2012 (European Optical Society, Joensuu, 2012). ISBN 978-3-9815022-4-4.Google Scholar
  45. 45.
    V. V. Dyomin, J. Watson, and P. W. Benzie, “Reducing the aberrations of holographic images of underwater particles by using the off-axis scheme with normal incidence of object beam,” in Proceedings of the MTS/IEEE International Conference “Oceans’07,” Aberdeen, Scotland, June 18–21, 2007 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2007), No. 070131–036. ISBN 1-4244-0635-8.Google Scholar
  46. 46.
    E. Foster and J. Watson, “Holography for underwater inspection and measurement: an overview of current work,” Opt. Laser Technol. 29 (1), 17–23 (1997).CrossRefGoogle Scholar
  47. 47.
    P. R. Hobson, E. P. Krantz, R. S. Lampitt, et al., “A preliminary study of the distribution of plankton using hologrammetry,” Opt. Laser Technol. 29 (1), 25–33 (1997).CrossRefGoogle Scholar
  48. 48.
    P. R. Hobson and J. Watson, “The principles and practice of holographic recording of plankton,” J. Opt. A: Pure Appl. Opt. 4, 34–S49 (2002).CrossRefGoogle Scholar
  49. 49.
    J. Katz, P. L. Donaghay, J. Zhang, et al., “Submersible holocamera for detection of particle characteristics and motions in the ocean,” Deep Sea Res., Part I. 46 (1), 1455–1481 (1999).CrossRefGoogle Scholar
  50. 50.
    J. Katz and J. Sheng, “Application of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).CrossRefGoogle Scholar
  51. 51.
    D. E. Levashov and A. I. Zhavoronkov, “Optronic sensor for mesoplankton studying in the sea water,” in Proceedings Conference Oceans’95 MTS/IEEE “Challenges of Our Changing Global Environment” (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995), Vol. 1, pp. 202–208.CrossRefGoogle Scholar
  52. 52.
    D. E. Levashov, A. I. Zhavoronkov, and A. P. Voronkov, “An optoelectronic sensor of mesoplankton as an addition to CTD-probes and towed vehicle,” in Proceedings IEEE/OES Conference “Oceans’98” (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1998), Vol. 1, pp. 178–182.Google Scholar
  53. 53.
    D. E. Levashov, A. I. Zhavoronkov, and A. P. Voronkov, “Novel mesoplankton size-quantitative characteristics sensor specially adopted to oceanographic probes and towed vehicles, Proceedings of the Coastal Ocean Space Utilization Symposium (COSU’ 97) “Coastal Ocean Space” (Singapore, 1997), Vol. 2, pp. 355–359.Google Scholar
  54. 54.
    E. Malkiel, O. Alquaddoomi, and J. Katz, “Measurements of plankton distribution in the ocean using submersible holography,” Meas. Sci. Technol. 10, 1142–1152 (1999).CrossRefGoogle Scholar
  55. 55.
    E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).CrossRefGoogle Scholar
  56. 56.
    D. W. Pfitsch, E. Malkiel, Y. Ronzhes, S. R. King, et al., “Development of a free-drifting submersible digital holographic imaging system,” in Proceedings of the MTS/IEEE Conference “Oceans’2005” (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2005), pp. 690–696.Google Scholar
  57. 57.
    U. Schnars, Digital Hologram Recording, Numerical Reconstruction, and Related Techniques, Ed. by U. Schnars and W. Jueptner (Springer-Verlag, Berlin, 2005).Google Scholar
  58. 58.
    U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).CrossRefGoogle Scholar
  59. 59.
    A. Tatsuro, “Submersible microscopes and image processing technologies,” Sea Technol. 40 (3), 61–63 (1999).Google Scholar
  60. 60.
    J. Watson, “Underwater visual inspection and measurement using optical holography,” Opt. Lasers Eng. 16, 375–390 (1992).CrossRefGoogle Scholar
  61. 61.
    J. Watson, S. Alexander, G. Craig, et al., “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, 9–15 (2001).CrossRefGoogle Scholar
  62. 62.
    J. Watson, S. Alexander, D. Hendry, et al., “Holocam: a subsea holographic camera for recording marine organisms and particles,” Proc. SPIE 4076, 111–119 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Dyomin
    • 1
    Email author
  • A. L. Olenin
    • 1
    • 2
  • I. G. Polovcev
    • 1
  • D. V. Kamenev
    • 1
  • A. S. Kozlova
    • 1
  • A. S. Olshukov
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Shirshov Institute of OceanologyMoscowRussia

Personalised recommendations