Advertisement

Oceanology

, Volume 58, Issue 4, pp 537–549 | Cite as

Interannual Variability of the Ice Cover and Primary Production of the Kara Sea

  • A. B. Demidov
  • S. V. Sheberstov
  • V. I. Gagarin
MARINE BIOLOGY
  • 35 Downloads

Abstract

Model and satellite data have been used to analyze interannual changes in the primary production (PP), ice-free area, and water temperature in the Kara Sea between 2002 and 2016. Significant positive trends for changes in the surface water temperature were recorded for all regions of the Kara Sea (R2 = 0.37–0.61, p < 0.05). A reliable trend toward an increase in ice-free surface area was observed only for the Yenisei estuary. PP growth trends were significant in the northern Region of the sea and the Yenisei estuary. The decrease in ice cover area for the entire Kara Sea amounted to 1% per year. A PP minimum was recorded in 2003, and a maximum, in 2011. The average increase in Kara Sea PP during the study period was 2% per year. The most rapid increase in Kara Sea PP was observed during the spring season (April–May). The increase in annual PP was mostly due to the expansion of the ice-free area. The increase in the phytoplankton photosynthesis rate could not have resulted in the increase in PP, because the average photosynthesis rate for the entire sea decreased during the study period. Considerable region-specific variation in the patterns of interannual Changes in PP in the Kara Sea were observed.

Notes

ACKNOWLEDGMENTS

The authors are grateful to GSFC DAAC (Goddard Space Flight Center, Distributed Active Archive Center), NASA, for the opportunity to use satellite data from the MODIS-Aqua scanner and to NSIDC NOAA for access to data on ice cover area. The work was performed according to State Task no. 0149-2018-0035 from the Federal Science and Education Agency.Financial support for the present work was provided by the Russian Foundation for Basic Research (project no. 16-05-00050). Fieldwork was supported by the Russian Science Foundation (grant no. 14-50-00095, direction “Ecosystems of Marine Regions Strategically Important for the Russian Federation”). Satellite data processing was supported by the Russian Science Foundation (grant no. 14-50-00095, direction: “Interaction of Physical, Biological, and Geological Processes in the Coastal Zone, Coastal Water Areas, and Inland Seas”).

REFERENCES

  1. 1.
    V. I. Vedernikov, A. B. Demidov, and A.I. Sud’bin, “Primary production and chlorophyll in the Kara Sea in September 1993,” Oceanology (Engl. Transl.) 34, 630–640 (1994).Google Scholar
  2. 2.
    A.A. Vetrov, “Chlorophyll, primary production, and organic carbon fluxes in the Kara Sea,” Oceanology (Engl. Transl.) 48, 33–42 (2008).Google Scholar
  3. 3.
    A. A. Vetrov and E. A. Romankevich, “Interannual variability of the primary production and organic carbon fluxes in the Arctic seas of Russia,” Oceanology (Engl. Transl.) 48, 340–348 (2008).Google Scholar
  4. 4.
    A. A. Vetrov and E. A. Romankevich, “Primary production and fluxes of organic carbon to the seabed in the Russian Arctic seas as a response to the recent warming,” Oceanology (Engl. Transl.) 51, 255–266 (2011).Google Scholar
  5. 5.
    A. A. Vetrov and E. A. Romankevich, “Primary production and fluxes of organic carbon to the seabed in the Eurasian arctic seas, 2003–2012,” Dokl. Earth Sci. 454, 44–46 (2014).CrossRefGoogle Scholar
  6. 6.
    M. E. Vinogradov, V. I. Vedernikov, E. A. Romankevich, and A. A. Vetrov, “Components of the carbon cycle in the Russian Arctic seas: primary production and flux of Corg from the photic layer,” Oceanology (Engl. Transl.) 40, 204–215 (2000).Google Scholar
  7. 7.
    A. B. Demidov, S. A. Mosharov, V. A. Artemyev, A. N. Stupnikova, U. V. Simakova, and S. V. Vazyulya, “Depth-integrated and depth-resolved models of Kara Sea primary production,” Oceanology (Engl. Transl.) 56, 515–526 (2016).Google Scholar
  8. 8.
    A. B. Demidov, S. V. Sheberstov, V. I. Gagarin, and P. V. Khlebopashev, “Seasonal variation of the satellite-derived phytoplankton primary production in the Kara Sea,” Oceanology (Engl. Transl.) 57, 91–104 (2017).Google Scholar
  9. 9.
    A. B. Demidov, S. V. Sheberstov, and V. I. Gagarin, “Estimation of annual Kara Sea primary production,” Oceanology (Engl. Transl.) 58, 369–380 (2018).Google Scholar
  10. 10.
    A. G. Zatsepin, P. O. Zavialov, V. V. Kremenetskiy, S. G. Poyarkov, and D. M. Soloviev, “The upper desalinated layer in the Kara Sea,” Oceanology (Engl. Transl.) 50, 657–667 (2010).Google Scholar
  11. 11.
    O. A. Kuznetsova, O. V. Kopelevich, S. V. Sheberstov, et al., “Analysis of the chlorophyll concentration in the Kara Sea according to MODIS–AQUA satellite scanner,” Issled. Zemli Kosmosa, No. 5, 21–31 (2013).Google Scholar
  12. 12.
    S. A. Mosharov, “Distribution of the primary production and chlorophyll a in the Kara Sea in September of 2007,” Oceanology (Engl. Transl.) 50, 884–892 (2010).Google Scholar
  13. 13.
    S. A. Mosharov, A. B. Demidov, and U. V. Simakova, “Peculiarities of the primary production process in the Kara Sea at the end of the vegetation season,” Oceanology (Engl. Transl.) 56, 84–94 (2016).Google Scholar
  14. 14.
    K. R. Arrigo, G. L. van Dijken, and S. Pabi, “Impact of a shrinking Arctic ice cover on marine primary production,” Geophys. Res. Lett. 35 (19), (2008). doi 10.1029/2008GL035028Google Scholar
  15. 15.
    K. R. Arrigo, G. L. van Dijken, and S. Bushinsky, “Primary production in the Southern Ocean, 1997–2006,” J. Geophys. Res.: Oceans 113, C08004 (2008). doi 10.1029/2007JC004551CrossRefGoogle Scholar
  16. 16.
    K. R. Arrigo and G. L. van Dijken, “Secular trends in Arctic Ocean net primary production,” J. Geophys. Res.: Oceans 116, C09011 (2011). doi 10.1029/2011JC007151Google Scholar
  17. 17.
    K. R. Arrigo and G. L. van Dijken, “Continued increases in Arctic Ocean primary production,” Progr. Oceanogr. 136, 60–70 (2015).CrossRefGoogle Scholar
  18. 18.
    N. R. Bates and T. Mathis, “The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks,” Biogeosciences 6 (11), 2433–2459 (2009).CrossRefGoogle Scholar
  19. 19.
    S. Bélanger, M. Babin, and J.-E. Tremblay, “Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding,” Biogeosciences 10 (6), 4087–4101 (2013).CrossRefGoogle Scholar
  20. 20.
    S. Ben Mustapha, P. Larouche, and S. Bélanger, “Evaluation of ocean color algorithms in the Southeastern Beaufort Sea: new parameterization using SeaWiFS, MODIS and MERIS spectral bands,” Can. J. Rem. Sens. 38 (5), 535–556 (2012).CrossRefGoogle Scholar
  21. 21.
    W.-J. Cai, L. Chen, B. Chen, et al., “Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin,” Science 329 (5991), 556–559 (2010).CrossRefGoogle Scholar
  22. 22.
    J. Campbell, D. Antoine, R. Armstrong, et al. “Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance,” Global Biogeochem. Cycles 16, (2002). doi 10.1029/2001GB001444Google Scholar
  23. 23.
    M.-E. Carr, M. A. M. Friedrichs, M. Schmeltz, et al., “A comparison of global estimates of marine primary production from ocean color,” Deep Sea Res., Part II 53, 741–770 (2006).CrossRefGoogle Scholar
  24. 24.
    D. J. Cavalieri, C. L. Parkinson, P. Gloersen, and H. J. Zwally, Arctic and Antarctic Sea Ice Concentrations from Multichannel Passive-Microwave Satellite Data Sets: October 1978–September 1995: User’s Guide NASA TM 104647 (Goddard Space Flight Center, Greenbelt, 1997).Google Scholar
  25. 25.
    D. J. Cavalieri and C. L. Parkinson, “Arctic sea ice variability and trends, 1979–2010,” Cryosphere 6, 881–889 (2012).CrossRefGoogle Scholar
  26. 26.
    J. C. Comiso, “The rapid decline of multiyear ice cover,” J. Clim. 25, (2012). doi 10.1175/JCLI-D11-00113.1Google Scholar
  27. 27.
    J. C. Comiso and F. Nishio, “Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data,” J. Geophys. Res.: Oceans 113, C02S07 (2008). doi 10.1029/2007JC0043257Google Scholar
  28. 28.
    J. C. Comiso, C. L. Parkinson, R. Gersten, and L. Stock, “Accelerated decline in the Arctic sea ice cover,” Geophys. Res. Lett. 35, L01703 (2008). doi 10.1029/2007GL031972CrossRefGoogle Scholar
  29. 29.
    A. B. Demidov, S. A. Mosharov, and P. N. Makkaveev, “Patterns of the Kara Sea primary production in autumn: biotic and abiotic forcing of subsurface layer,” J. Mar. Sys. 132, 130–149 (2014).CrossRefGoogle Scholar
  30. 30.
    F. Dupont, “Impact of sea-ice biology on overall primary production in a biophysical model of the pan-Arctic Ocean,” J. Geophys. Res.: Oceans 117, C00D17 (2012). doi 10.1029/2011JC006983CrossRefGoogle Scholar
  31. 31.
    P. Falkowski, “Light-shade adaptation and assimilation numbers,” J. Plankton Res. 3, 203–216 (1981).CrossRefGoogle Scholar
  32. 32.
    R. Frouin, J. McPherson, K. Ueyoshi, and B. A. Franz, “A time series of photosynthethetically available radiation at the ocean surface from SeaWiFS and MODIS data,” Proc. SPIE, (2012). http://dx.doi.org/10.1117/ 1112.981264.Google Scholar
  33. 33.
    V. J. Hill, P. A. Matrai, E. Olson, et al., “Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates,” Progr. Oceanogr. 110, 107–125 (2013).CrossRefGoogle Scholar
  34. 34.
    Remote Sensing of Ocean Color in Coastal and Other Optical-Complex Waters, Ed. by S. Sathyendranath (International Ocean-Color Coordinating Group, Dartmouth, 2000).Google Scholar
  35. 35.
    Ocean Color Remote Sensing in Polar Seas, Ed. by M. Babin (International Ocean-Color Coordinating Group, Dartmouth, 2015).Google Scholar
  36. 36.
    IPCC, “Climate change 2013: the physical science basis,” in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, (Cambridge University Press, Cambridge, 2013).Google Scholar
  37. 37.
    A. Kubryakov, S. Stanichny, and A. Zatsepin, “River plume dynamics in the Kara Sea from altimetry-based lagrangian model, satellite salinity and chlorophyll data,” Remote Sens. Environ. 176, 177–187 (2016).CrossRefGoogle Scholar
  38. 38.
    R. Kwok, G. F. Cunningham, M. Wensnahan, et al., “Thinning and volume loss of Arctic sea ice: 2003–2008,” J. Geophys. Res.: Oceans 114, C07005 (2009). . doi 10.1029/2009JC005312CrossRefGoogle Scholar
  39. 39.
    Z. Lee, J. Marra, M. J. Perry, and M. Kahru, “Estimating oceanic primary productivity from ocean color remote sensing: a strategic assessment,” J. Mar. Sys. 149, 50–59 (2015).CrossRefGoogle Scholar
  40. 40.
    E. Leu, J. E. Søreide, D. O. Hessen, et al., “Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality,” Progr. Oceanogr. 90, 18–32 (2011).CrossRefGoogle Scholar
  41. 41.
    K. M. Lewis, B. G. Mitchell, G. L. van Dijken, and K. R. Arrigo, “Regional chlorophyll a algorithms in the Arctic Ocean and their effect on satellite-derived primary production estimates,” Deep Sea Res., Part II 130, 14–27 (2016).CrossRefGoogle Scholar
  42. 42.
    G. A. MacGilchrist, A. C. Naveira Garabato, T. Tsubouchi, et al., “The Arctic Ocean carbon sink,” Deep Sea Res., Part I 86, 39–55 (2014).CrossRefGoogle Scholar
  43. 43.
    J. E. O’Reilly, S. Maritorena, B. G. Mitchell, et al., “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.: Oceans 103 (11), 24937–24953 (1998).CrossRefGoogle Scholar
  44. 44.
    J. E. O’Reilly, et al., “SeaWiFS post launch calibration and validation analyses, Part 3,” in NASA Technical Memorandum (NASA Goddard Space Flight Center, Greenbelt, 2000), Vol. 11.Google Scholar
  45. 45.
    J. E. Overland and M. Wang, “When will the summer Arctic be nearly sea ice free?” Geophys. Res. Lett. 40 (10), 2097–2101 (2013).CrossRefGoogle Scholar
  46. 46.
    S. Pabi, G. L. van Dijken, and K. R. Arrigo, “Primary production in the Arctic Ocean, 1998–2006,” J. Geophys. Res.: Oceans 113, C08005 (2008). doi 10.1029/ 2007/JC004578CrossRefGoogle Scholar
  47. 47.
    D. Petrenko, D. Pozdnyakov, J. Johannessen, et al., “Satellite-derived multi-year trend in primary production in the Arctic Ocean,” Int. J. Remote Sens. 34, 3903–3937 (2013).CrossRefGoogle Scholar
  48. 48.
    S. Pivovarov, R. Schlitzer, and A. Novikhin, “River run-off influence on the water mass formation in the Kara Sea,” in Siberian River Run-Off in the Kara Sea, Ed. by R. Stein, (Elsevier, Amsterdam, 2003), pp. 9–25.Google Scholar
  49. 49.
    R. W. Reynolds, T. M. Smith, C. Liu, et al., “Daily high-resolution-blended analyses for sea surface temperature,” J. Clim. 20 (22), 5473–5496 (2007).CrossRefGoogle Scholar
  50. 50.
    E. Sakshaug, “Primary and secondary production in the Arctic Seas,” in The Organic Carbon Cycle in the Arctic Ocean, Ed. by R. Stein and R. W. Macdonald (Springer-Verlag, Berlin, 2004), pp. 57–81.Google Scholar
  51. 51.
    S. V. Sheberstov and E. A. Lukyanova, “A system for acquisition, processing, and storage of satellite and field biooptical data,” Proceedings of IV International Conference “Current Problems in Optics of Natural Waters” (Nizhny Novgorod, 2007), pp. 179–183.Google Scholar
  52. 52.
    J. Stroeve, M. Holland, W. Meier, et al., “Arctic sea ice decline: Faster than forecast,” Geophys. Res. Lett. 34, L09501 (2007). doi 10.1029/2007GL029703CrossRefGoogle Scholar
  53. 53.
    J. C. Stroeve, V. Kattsov, A. P. Barrett, et al., “Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations,” Geophys. Res. Lett. 39, L16502 (2012). doi 10.1029/2012GL052676CrossRefGoogle Scholar
  54. 54.
    J. C. Stroeve, M. C. Serreze, M. M. Holland, et al., “The Arctic’s rapidly shrinking sea ice cover: a research synthesis,” Clim. Change 110, 1005–1027 (2012).CrossRefGoogle Scholar
  55. 55.
    J.-E. Tremblay, D. Robert, D. E. Varela, et al., “Current state and trends in Canadian Arctic marine ecosystems: I. Primary production,” Clim. Change 115, 161–178 (2012).CrossRefGoogle Scholar
  56. 56.
    M. Vancoppenolle, L. Bopp, G. Madec, et al., “Future Arctic Ocean primary productivity from CMIP5 simulations: uncertain outcome, but consistent mechanisms,” Global Biogeochem. Cycle 27, 605–619 (2013). doi 10.1002/gbc.20055CrossRefGoogle Scholar
  57. 57.
    J. Zhang, C. Ashjian, R. Campbell, et al., “The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves,” J. Geophys. Res.: Oceans 119, 297–312 (2014). doi 10.1002/2013JC009301CrossRefGoogle Scholar
  58. 58.
    J. Zhang, Y. H. Spitz, M. Steele, et al., “Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem,” J. Geophys. Res.: Oceans 115, C10015 (2010). doi 10.1029/2009/JC005387CrossRefGoogle Scholar
  59. 59.
    Y. Zhang, C. Chen, R. C. Beardsley, et al., “Seasonal and interannual variability of the Arctic sea ice: A comparison between AO-FVCOM and observations,” J. Geophys. Res.: Oceans 121 (11), 8320–8350 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. B. Demidov
    • 1
  • S. V. Sheberstov
    • 1
  • V. I. Gagarin
    • 1
  1. 1.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations