Skip to main content
Log in

Oceanic and Continental Mantle Fragments in Ophiolites of the Northwestern Pacific Margins: Composition, Age, and Genesis of Sakhalin Peridotites

  • Marine Geology
  • Published:
Oceanology Aims and scope

Abstract

The paper presents the results from a study of original and published data on the chemical composition and age of mantle peridotites from Sakhalin Island ophiolites. The material and genetic proximity of peridotites from the Berezovsky and Shelting plutons, on the one hand, and mélange zone serpentinites, on the other, have been established. In composition and Fe2O3 and MgO variations, Sakhalin peridotites differ radically from those of the Northeast Asia ophiolite complexes (Krasnogorsky Massif, Karaginsky Island Massif, etc.), which are fragments of Pacific Plate mantle. Conversely, Sakhalin peridotites have a subcontinental genesis and are compositionally close to xenoliths of lherzolites from Hankai Microcontinent mantle (southern Sikhote-Alin). The rythmics of alternation in compression and expansion at the margin of the Asian continent in the last 180 million years, caused by cyclical changes in the Pacific spreading rate, have been considered. According to data obtained by U-Pb dating of zircons, the formation of the Berezovsky Massif took place 169–154 Ma ago during Jurassic expansion of the continental margin. Matching age and composition data demonstrate that the Sakhalin ophiolites formed within the marginal sea basin during riftinduced destruction of the periphery of the Hankai Craton. The assumed tectonic setting was close to that reconstructed for the Jurassic Josephine ophiolites of the California margin of the North American continent. The continental genesis of the studied ophiolites agrees with the age and tectonic mode of ophiolite formation for Sakhalin Island.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Belyi and V. V. Anikin, Geological Structure and Ophiolites of Elistratov Peninsula: Monograph (Northeastern Comprehensive Scientific Research Inst., Magadan, 1985), Part 1.

    Google Scholar 

  2. A. F. Bekhtol’d and D. F. Semenov, “New data on the composition and structure of the Shel’tingskii gabbroperidotite pluton (Sakhalin Island) (Sakhalin Island),” Dokl. Akad. Nauk SSSR 243, 445–448 (1978).

    Google Scholar 

  3. A. F. Bekhtol’d and D. F. Semenov, “Metabasites and hyperbasites of the Susunaiskii Ridge (Sakhalin Island),” Tikhookean. Geol., No. 1, 121–126 (1990).

    Google Scholar 

  4. V. V. Velinskii, Alpinotypic Hyperbasites of Ocean-Continent Transition Zones (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  5. G. P. Vergunov, “New data on ultrabasic rocks of Sakhalin and the Kuril Islands,” Dokl. Akad. Nauk SSSR 158, 629–637 (1964).

    Google Scholar 

  6. S. V. Vysotskii, G. I. Govorov, I. V. Kemkin, and V. I. Sapin, “Boninite-ophiolite association of Eastern Sakhalin: geology and petrogenesis,” Tikhookean. Geol. 17 (6), 3–15 (1998).

    Google Scholar 

  7. Geodynamics, Magmatism, and Metallogeny of Eastern Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006), Book 1.

    Google Scholar 

  8. Geochemistry of Deep Volcanic Rocks and Xenoliths (Nauka, Moscow, 1980) [in Russian].

  9. E. D. Golubeva, Candidate’s Dissertation in Geology-Mineralogy (Vladivostok, 1975).

    Google Scholar 

  10. State Geological Map of Russian Federation, Scale 1: 200000, Sakhalin Series, Sheet M-54-XXIV (Pervomaisk), Explanatory Note (All-Russian Scientific Research Geological Inst., St. Petersburg, 2009) [in Russian].

  11. V. M. Grannik, “Petrogeochemical characteristics of magmatic rocks of the East Sakhalin Late Mesozoic island arc system,” Tikhookean. Geol. No. 6, 67–86 (1991).

    Google Scholar 

  12. A. E. Zharov, “Accretionary tectonics and geodynamics of southern Sakhalin,” Geotectonics 38, 277–293 (2004).

    Google Scholar 

  13. I. V. Kemkin, “Structure of terranes in a Jurassic accretionary prism in the Sikhote-Alin-Amur area: implications for the Jurassic geodynamic history of the Asian eastern margin,” Russ. Geol. Geophys. 49, 759–770 (2008).

    Article  Google Scholar 

  14. D. V. Kovalenko, Paleomagnetism of Geological Complexes of Kamchatka and South Koryakia. Tectonic and Geophysical Interpretation (Nauchnyi Mir, Moscow, 2003) [in Russian].

    Google Scholar 

  15. M. V. Kononov, Tectonics of Northwestern Plates of Pacific Ocean (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  16. F. P. Lesnov, M. P. Gora, V. A. Bobrov, et al., “Distribution of rare-earth elements and genesis of the Berezovskii mafic-ultramafic massif (Sakhalin Island),” Tikhookean. Geol. 17 (4), 42–58 (1998).

    Google Scholar 

  17. F. P. Lesnov and A. A. Stepashko, “New data on the chemical composition of the rocks of the mafic-ultramafite massifs of the East Sakhalin ophiolite association,” Proceedings of Conference “Metallogeny of Ancient and Modern Oceans” (Miass, 2010), pp. 234–239.

    Google Scholar 

  18. F. P. Lesnov, V. G. Gal’versen, V. G. Tsimbalist, and A. T. Titov, “First data on the U–Pb isotopic dating and original platinum content of the Berezovskii polygenic mafic-ultramafic massif (Sakhalin Island),” Dokl. Earth Sci. 433, 1104–1107 (2010).

    Article  Google Scholar 

  19. F. P. Lesnov, Petrology of Polygenic Mafic-Ultramafic Massifs of East Sakhalin Ophiolite Association (GEO, Novosibirsk, 2015) [in Russian].

    Google Scholar 

  20. Explanatory Note to Tectonic Map of the Sea of Okhotsk Region, Ed. by N. A. Bogdanov and V. E. Khain (Institute of the Lithosphere of Marginal and Inland Seas, Russian Academy of Sciences, Moscow, 2000) [in Russian].

    Google Scholar 

  21. A. A. Peive, “The structure and structural position of ophiolites of Koryak Ridge,” Tr. Geol. Inst., Akad. Nauk SSSR, No. 393, (1984).

    Google Scholar 

  22. G. V. Pinus, V. V. Velinskii, F. P. Lesnov, et al., Alpinotype Hyperbasites of the Anadyr-Koryak Folded System (Nauka, Novosibirsk, 1973) [in Russian].

    Google Scholar 

  23. Yu. N. Raznitsin, “The ophiolite allochthons and adjacent deep-sea depressions in the Western Pacific,” Tr. Geol. Inst., Ross. Akad. Nauk 371, (1982).

  24. D. P. Savel’ev, “Stages of tectonic evolution of ophiolite complexes in the zone of the Kamchatka-Aleutian junction,” Proceedings of the Conference in Memoriam of L.M. Parfenov “Tectonics and Metallogeny of the Northern Circum-Pacific and East Asia” (Institute of Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, 2007), pp. 302–303.

    Google Scholar 

  25. V. V. Slodkevich, “Shel’tingskii peridotite-pyroxenitenorite layered pluton of Eastern Sakhalin,” Dokl. Akad. Nauk SSSR 222, 946–949 (1975).

    Google Scholar 

  26. V. V. Slodkevich and F. P. Lesnov, “Geology and petrology of Berezovskii mafic-ultramafic pluton (Sakhalin Island),” in The Data on Genetic and Experimental Mineralogy (Nauka, Novosibirsk, 1976), Vol. 10, pp. 53–63.

    Google Scholar 

  27. A.A. Stepashko, The Chemical Structure of the Ultrabasic Mantle (Dal’nauka, Vladivostok, 1998) [in Russian].

    Google Scholar 

  28. A. A. Stepashko, “Origin of West Pacific seamounts and features of the cretaceous dynamics of the Pacific plate,” Oceanology (Engl. Transl.) 46, 411–417 (2006).

    Google Scholar 

  29. A. A. Stepashko, “The cretaceous dynamics of the pacific plate and stages of magmatic activity in Northeastern Asia,” Geotectonics 40, 225–235 (2006).

    Article  Google Scholar 

  30. A. A. Stepashko, “Spreading cycles in the Pacific Ocean,” Oceanology (Engl. Transl.) 48, 401–408 (2008).

    Google Scholar 

  31. A. I. Khanchuk, I. V. Panchenko, and I. V. Kemkin, Preprint No. 224, DVO AN SSSR (Far Eastern Branch, Academy of Sciences of Soviet Union, Vladivostok, 1988).

    Google Scholar 

  32. A. I. Khanchuk and I. V. Kemkin, “Geodynamic evolution of the Sea of Japan region in Mesozoic,” Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, No. 6, 94–108 (2003).

    Google Scholar 

  33. A. D. Chekhov, Tectonic Evolution of Northeastern Asia: Marine Marginal Model (Nauchnyi Mir, Moscow, 2000) [in Russian].

    Google Scholar 

  34. M. N. Shapiro, A. V. Solov’ev, and J. K. Hourigan, “Lateral structural variability in zone of eocene islandarc-continent collision, Kamchatka,” Geotectonics 42, 469–487 (2008).

    Article  Google Scholar 

  35. S. A. Shcheka, Basite-Hyperbasite Intrusions and Inclusions in the Volcanic Rocks of the Far East (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  36. K. Aoki, S. Maruyama, Y. Isozaki, et al., “Recognition of the Shimanto HP metamorphic belt within the traditional Sanbagawa HP metamorphic belt: New perspectives of the Cretaceous-Palaeogene tectonics in Japan,” J. Asian Earth Sci. 42, 355–369 (2011).

    Article  Google Scholar 

  37. F. Deschamps, M. Godard, S. Guillot, and K. Hattori, “Geochemistry of subduction zone serpentinites: a review,” Lithos 178, 96–127 (2013).

    Article  Google Scholar 

  38. Y. Dilek and A. Polat, “Suprasubduction zone ophiolites and Archean tectonics,” Geology 36 (5), 431–432 (2008).

    Article  Google Scholar 

  39. D. C. Engebretson, A. Cox, and R. G. Gordon, “Relative motions between oceanic plates in the Pacific basin,” J. Geophys. Res. 89 (12), 10291–10310 (1984).

    Article  Google Scholar 

  40. O. F. Gaul, W. L. Griffin, S. Y. O’Reilly, and N. J. Pearson, “Mapping olivine composition in the lithospheric mantle,” Earth Planet. Sci. Lett. 182 (3–4), 223–235 (2000).

    Article  Google Scholar 

  41. W. L. Griffin, B. J. Doyle, C. G. Ryan, et al., “Layered mantle lithosphere in the Lac de Gras area, Slave craton: composition, structure and origin,” J. Petrol. 40, 705–727 (1999).

    Article  Google Scholar 

  42. W. L. Griffin, S. Y. O’Reilly, J. C. Afonso, and G. C. Begg, “The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications,” J. Petrol. 50 (7), 1185–1204 (2009).

    Article  Google Scholar 

  43. G. D. Harper, J. B. Saleeby, and M. Heizler, “Formation and emplacement of Josephine ophiolite and the Nevada orogeny in the Klamath mountains, California–Oregon: U/Pb zircon and 40Ar/39Ar geochronology,” J. Geophys. Res.: Solid Earth 99 (3), 4293–4321 (1994).

    Article  Google Scholar 

  44. G. D. Harper, “Tectonic implications of boninite, arc tholeiite, and MORB magma types in the Josephine ophiolite, California–Oregon,” Geol. Soc. Spec. Publ. (London) 218, 207–230 (2003). doi 10.1144/GSLSP.2003.210.01.12

    Article  Google Scholar 

  45. C. Herzberg, “Geodynamic information in peridotite petrology,” J. Petrol. 45 (12), 2507–2530 (2004).

    Article  Google Scholar 

  46. A. Ishiwatari, S. D. Sokolov, and S. V. Vysotskiy, “Petrological diversity and origin of ophiolites in Japan and Far East Russia with emphasis on depleted harzburgite,” in Ophiolites in Earth History, Geol. Soc. Spec. Publ. (London) no. 218 (Geological Society, London, 2003), pp. 597–617.

    Google Scholar 

  47. T. Itaya, T. Tsujimori, and J. G. Liou, “Evolution of the Sanbagawa and Shimanto high-pressure belts in SW Japan: insights from K–Ar (Ar–Ar) geochronology,” J. Asian Earth Sci. 42, 1075–1090 (2011).

    Article  Google Scholar 

  48. G. Kimura, V. S. Rodzdestvenskiy, K. Okumura, et al., “Mode of mixture of oceanic fragments and terrigenous trench fill in an accretionary complex: example from southern Sakhalin,” Tectonophysics 202 (2–4), 361–374 (1992).

    Article  Google Scholar 

  49. G. Manatschal and O. Muntener, “A type sequence across an ancient magma-poor ocean-continent transition: the example of the western Alpine Tethys ophiolites,” Tectonophysics 473, 4–19 (2009).

    Article  Google Scholar 

  50. W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  51. Q.-R. Meng, “What drove late Mesozoic extension of the northern China–Mongolia tract?,” Tectonophysics 369, 155–174 (2003).

    Article  Google Scholar 

  52. M. M. Miller and J. B. Saleeby, “U–Pb geochronology of detrital zircon from Upper Jurassic synorogenic turbidites, Galice Formation, and related rocks, western Klamath Mountains: correlation and Klamath Mountains provenance,” J. Geophys. Res.: Solid Earth 100 (9), 18045–18058 (1995).

    Article  Google Scholar 

  53. E.-R. Neumann and N. S. C. Simon, “Ultra-refractory mantle xenoliths from ocean islands: How do they compare to peridotites retrieved from oceanic sub-arc mantle?,” Lithos 107, 1–16 (2009).

    Article  Google Scholar 

  54. Y. Niu, “Bulk-rock major and trace element composition of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges,” J. Petrol. 45 (12), 2423–2458 (2004).

    Article  Google Scholar 

  55. S. Y. O’Reilly and W. L. Griffin, “Imagine global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: geophysical implications,” Tectonophysics 416, 289–309 (2006).

    Article  Google Scholar 

  56. Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program, Ed. by Y. Dilek, (Geological Society of America, Boulder, 2000), Vol. 349.

  57. Ophiolites in Earth History, Ed. by Y. Dilek and P. T. Robinson (Geological Society of London, London, 2003), Vol. 218.

  58. Y.-I. Otofuji, “Large tectonic movement of the Japan Arc in Late Cenozoic times inferred from paleomagnetism: review and synthesis,” Island Arc 5 (3), 229–249 (1996).

    Article  Google Scholar 

  59. D. G. Pearson and N. Witting, “Formation of Archaeon continental lithosphere and its diamonds: the root of the problem,” J. Geol. Soc. 165, 895–914 (2008).

    Article  Google Scholar 

  60. P. Peltonen and G. Brugmann, “Origin of layered continental mantle (Karelian craton, Finland): geochemical and Re–Os isotope constraints,” Lithos 89, 405–423 (2006).

    Article  Google Scholar 

  61. J. Ren, K. Tamaki, S. Li, and J. Zhang, “Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas,” Tectonophysics 344, 175–205 (2002).

    Article  Google Scholar 

  62. D. B. Snyder, “Lithospheric growth at margins of cratons,” Tectonophysics 355, 7–22 (2002).

    Article  Google Scholar 

  63. S. D. Sokolov, M. V. Luchitskaya, S. A. Silantyev, et al., “Ophiolites in accretionary complexes along the Early Cretaceous margin of NE Asia: age, composition and geodynamic diversity,” in Ophiolites in Earth History, Ed. by Y. Dilek and P. T. Robinson (Geological Society of London, London, 2003), Vol. 218, pp. 619–664.

    Google Scholar 

  64. A. A. Stepashko, “Cretaceous seamounts: record of the extension history of the Pacific plate,” in New Oceanography Research Developments: Marine Chemistry, Ocean Floor Analyses and Marine Phytoplankton, Ed. by L. Mortorino and P. K. Hauppauge (Nova Science, New York, 2010), pp. 249–267.

    Google Scholar 

  65. M. Ulrich, C. Picard, S. Guillot, et al., “Multiple melting stages and refertilization as indicators for ridge to subduction formation: the New Caledonia ophiolite,” Lithos 115, 223–236 (2010).

    Article  Google Scholar 

  66. H. Yuan and B. Romanowicz, “Lithospheric layering in the North American craton,” Nature 466, 1063–1068 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. Lesnov.

Additional information

Original Russian Text © A.A. Stepashko, F.P. Lesnov, 2018, published in Okeanologiya, 2018, Vol. 58, No. 3, pp. 488–500.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepashko, A.A., Lesnov, F.P. Oceanic and Continental Mantle Fragments in Ophiolites of the Northwestern Pacific Margins: Composition, Age, and Genesis of Sakhalin Peridotites. Oceanology 58, 459–469 (2018). https://doi.org/10.1134/S0001437018030189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437018030189

Navigation