Advertisement

Oceanology

, Volume 58, Issue 3, pp 396–404 | Cite as

Structure and Productivity of the Phytocenosis in the Southwestern Kara Sea in Early Spring

  • S. A. Mosharov
  • A. F. Sazhin
  • E. I. Druzhkova
  • P. V. Khlebopashev
Marine Biology
  • 15 Downloads

Abstract

Results of plankton biota studies in the southwestern Kara are presented. The spatial distribution of hydrochemical and hydrophysical parameters related to structural and functional characteristics of phytoplankton in the surface water is considered. The chlorophyll a concentration varied in the surface layer of the Kara Sea from 0.08 to 3.22 mg m–3 (mean value 0.62 mg m–3). Primary production varied from 0 to 1.92 mg C m–3 day–1 (the mean value of 0.42 mg C m–3 day–1) in the ice-covered water areas and was greater by a factor of four, ranging from 1.01 to 3.46 mg C m–3 day–1 (the mean value of 1.79 mg C m–3 day–1) in ice-free areas. In this case, the total algal biomass varied from 0.8 to 110.7 mg C m–3 (mean value 10.6 mg C m–3). It is shown that in the study period, waters from the western Kara Sea were more productive than the estuarine water areas of the Ob and Yenisei rivers. The activity of phototrophic phytoplankton in river waters was almost completely absent. It is established that the contents of nutrients and iron were higher than the threshold for limitation of phytoplankton development. The experiments showed that the production activity of phototrophic algae is restrained by light deficit beneath the ice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Bobrov, V. M. Savinov, and P. R. Makarevich, “chlorophyll and Primary Production,” in Ecology and Biological Resources of the Kara Sea (Kola Scientific Center, Academy of Sciences of Soviet Union, Apatity, 1989), pp. 45–50.Google Scholar
  2. 2.
    V. I. Vedernikov, A. B. Demidov, and A. I. Sud’bin, “Primary production and chlorophyll in the Kara Sea in September 1993,” Okeanologiya (Moscow) 34, 693–703 (1994).Google Scholar
  3. 3.
    V. I. Vedernikov, “The effect of environmental factors on assimilation number in natural populations of marine phytoplankton,” Tr. Inst. Okeanol. im. P.P. Shirshova, Akad. Nauk SSSR 105, 106–129 (1976).Google Scholar
  4. 4.
    G. G. Vinberg, Yu. G. Kabanova, and O. I. Koblents-Mishke, Determination of Primary Production of Organic Matter in Water Bodies by the Radiocarbon Method (Belarusian State Univ., Minsk, 1960) [in Russian].Google Scholar
  5. 5.
    S. V. Gontarev and S. A. Mosharov, RF Patent No. 2547685, Byull. Izobret., No. 10 (2015).Google Scholar
  6. 6.
    I. O. Dumanskaya, Ice Conditions of the European Seas of Russia (Ig-Sotsin, Moscow, 2014) [in Russian].Google Scholar
  7. 7.
    P. R. Makarevich and D. G. Matishov, “Spring production cycle of phytoplankton in the Kara Sea,” Dokl. Akad. Nauk 375, 421–423 (2000.Google Scholar
  8. 8.
    D. N. Matorin, V. A. Osipov, O. V. Yakovleva, and S. I. Pogosyan, Determination of the Status of Plants and Algae by Chlorophyll Fluorescence (Moscow State Univ., Moscow, 2010) [in Russian].Google Scholar
  9. 9.
    S. A. Mosharov, “Distribution of the primary production and chlorophyll a in the Kara Sea in September of 2007,” Oceanology (Engl. Transl.) 50, 884–892 (2010).Google Scholar
  10. 10.
    S. A. Mosharov, S. V. Gontarev, and M. N. Korsak, “New phytoincubator with temperature and illumination control for determination of primary production,” Bezop. Tekhnosfere, No. 4, 3–9 (2015).Google Scholar
  11. 11.
    S. A. Mosharov, A. B. Demidov, and U. V. Simakova, “Peculiarities of the primary production process in the Kara Sea at the end of the vegetation season,” Oceanology (Engl. Transl.) 56, 84–94 (2016).Google Scholar
  12. 12.
    A. F. Sazhin, S. A. Mosharov, N. D. Romanova, et al., “The plankton community of the Kara Sea in early spring,” Oceanology (Engl. Transl.) 57, 222–224 (2017).Google Scholar
  13. 13.
    A. F. Sazhin, T. N. Rat’kova, S. A. Mosharov, et al., “Biological components of seasonal ice,” in Study of Marine Fauna, Vol. 69, No. 77: Biological Resources of the White Sea: Study and Use (Zoological Inst., Russian Academy of Sciences, St. Petersburg, 2012), pp. 97–116.Google Scholar
  14. 14.
    Modern Hydrochemical Studies of an Ocean (Institute of Oceanology, Academy of Sciences of Soviet Union, Moscow, 1992) [in Russian].Google Scholar
  15. 15.
    I. N. Sukhanova, M. V. Flint, V. M. Sergeeva, and E. I. Druzhkova, “Phytocenosises of the estuaries of Ob and Yenisei, and Ob-Yenisei coastal region,” Proceedings of Scientific Conference “Ecosystem of the Kara Sea: New Expedition Data,” Moscow, May 27–29, 2015 (APR, Moscow, 2015), pp. 105–111.Google Scholar
  16. 16.
    Analytical Chemistry: A Modern Approach to Analytical Science, Ed. by R. Kellner (Wiley, Weinheim, 2004).Google Scholar
  17. 17.
    F. M. Aguilar-Islas, M. P. Hurst, K. N. Buck, et al., “Micro-and macronutriens in the southeastern Bering Sea: insight into iron-replete and iron-depleted regimes,” Progr. Oceanogr. 73, 99–126 (2007).CrossRefGoogle Scholar
  18. 18.
    S. Beer, M. Bjork, R. Gademann, and P. J. Ralph, “Measurement of photosynthesis in seagrasses,” in Global Seagrass Research Methods, Ed. by F. T. Short and R. Coles (Elsevier, Amsterdam, 2001), pp. 183–198.CrossRefGoogle Scholar
  19. 19.
    P. W. Boyd, A. J. Watson, C. S. Law, et al., “A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization,” Nature 407, 695–702 (2000).CrossRefGoogle Scholar
  20. 20.
    D. A. Caron, “Technique for enumeration of heterotrophic nanoplankton using epifluorescence microscopy, and comparison with other procedures,” Appl. Environ. Microbiol. 46, 491–498 (1983).Google Scholar
  21. 21.
    P. G. Falkowski, “Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean,” Nature 387, 272–275 (1997).CrossRefGoogle Scholar
  22. 22.
    T. R. Fisher, E. R. Peele, J. W. Ammerman, and L. W. J. Harding, “Nutrient limitation of phytoplankton in Chesapeake Bay,” Mar. Ecol.: Progr. Ser. 82, 51–63 (1992).CrossRefGoogle Scholar
  23. 23.
    A. Grebecki, “Adsorption des fluorochromes par le cystome des Cillies,” Bull. Acad. Pol. Sci. 10, 483–485 (1962).Google Scholar
  24. 24.
    J. E. Hobbie, R. J. Daley, and S. Jasper, “Use of nuclepore filters for counting bacteria by fluorescence microscopy,” Appl. Environ. Microbiol. 35 (5), 1225–1228 (1977).Google Scholar
  25. 25.
    O. Holm-Hansen and B. Riemann, “chlorophyll a determination: improvements in methodology,” Oikos 30, 438–447 (1978).CrossRefGoogle Scholar
  26. 26.
    Inductively Coupled Plasmas in Analytical Atomic Spectrometry, Ed. by A. Montaser and D. W. Goligthly (VCH, New York, 1992).Google Scholar
  27. 27.
    Z. Kolber and P. G. Falkovski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38 (8), 1646–1665 (1993).CrossRefGoogle Scholar
  28. 28.
    Q. Li, L. Legendre, and N. Jiao, “Phytoplankton responses to nitrogen and iron limitation in the tropical and subtropical Pacific Ocean,” J. Plankton Res. 37 (2), 306–319 (2015).CrossRefGoogle Scholar
  29. 29.
    P. R. Makarevich, V. V. Larionov, and D. V. Moiseev, “Phytoplankton succession in the Ob–Yenisei shallow zone of the Kara Sea based on Russian databases,” J. Sea Res. 10, 31–40 (2015).CrossRefGoogle Scholar
  30. 30.
    J. H. Martin, R. M. Gordon, and S. E. Fitzwater, “The case for iron,” Limnol. Oceanogr. 36, 1793–1802 (1991).CrossRefGoogle Scholar
  31. 31.
    S. Menden-Deuer and E. J. Lessard, “Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton,” Limnol. Oceanogr. 45 (3), 569–579 (2000).CrossRefGoogle Scholar
  32. 32.
    C. M. Moore, M. M. Mills, and K. Arrigo, “Processes and patterns of oceanic nutrient limitation,” Nat. Geosci. 6, 701–710 (2013).CrossRefGoogle Scholar
  33. 33.
    S. Pivovarov, R. Schlitzer, and A. Novikhin, “River runoff influence on the water mass formation in the Kara Sea,” in Siberian River Runoff in the Kara Sea, Ed. by R. Stein (Elsevier, Amsterdam, 2003), pp. 9–25.Google Scholar
  34. 34.
    P. J. Ralf and R. Gademann, “Rapid light curves: a powerful tool to assess photosynthetic activity,” Aquat. Bot. 82, 222–237 (2005).CrossRefGoogle Scholar
  35. 35.
    J. E. G. Reymont, Plankton and Productivity in the Oceans, Vol. 1: Phytoplankton (Pergamon, Oxford, 1980).Google Scholar
  36. 36.
    S. Rysgaard, M. Kuhl, R. N. Glud, and J. W. Hansen, “Biomass, production and horizontal patchiness of sea algae in a high-Arctic fjord,” Marine Ecol.: Progr. Ser. 223, 15–26 (2001).CrossRefGoogle Scholar
  37. 37.
    A. F. Sazhin, L. F. Artigas, J. C. Nejstgaard, and M. E. Frischer, “The colonization of two Phaeocystis species (Prymnesiophyceae) by pennate diatoms and other protists: a significant contribution to colony biomass,” Biogeochemistry 83, 137–145 (2007).CrossRefGoogle Scholar
  38. 38.
    U. Schreiber, “Pulse amplitude (PAM) fluorimetry and saturation pulse method,” in Chlorophyll Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration Series, Ed. by G. Papageorgiou and G. Govindjee (Kluwer, Dordrecht, 2004), pp. 270–319.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. A. Mosharov
    • 1
    • 2
  • A. F. Sazhin
    • 1
  • E. I. Druzhkova
    • 3
  • P. V. Khlebopashev
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.Murmansk Marine Biological InstituteKola Scientific CenterMurmanskRussia

Personalised recommendations