, Volume 58, Issue 3, pp 405–415 | Cite as

Accumulation of Chemical Elements in the Dominant Species of Copepods in the Ob Estuary and the Adjacent Shelf of the Kara Sea

  • N. V. Lobus
  • A. V. Drits
  • M. V. Flint
Marine Biology


Studies were carried out in the Ob River estuary and at the adjacent shelf of the Kara Sea. The concentrations of organic carbon, lipids, major elements (Na, Mg, P, S, K, and Ca), trace elements (Li, Be, B, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Ag, Cd, Sb, Cs, Ba, Hg, Tl, Pb, Bi, Th, and U), and rare-earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were determined in the dominant species of mesozooplankton (Senecella siberica, Limnocalanus macrurus, and Calanus spp.). The similarities and differences are shown for the chemical compositions of the specimens. Calanus spp. are characterized by a large Li accumulation with concentrations ~350 times higher than those in S. siberica and L. macrurus. The total accumulation of chemical elements per unit volume is higher in L. macrurus than in S. siberica and Calanus spp., amounting to 6.63, 0.69, and 0.41 mg, respectively. The intensity of biological accumulation and the spatial disposition of the area of maximum accumulation of elements in the zooplankton community within the boundaries of the Ob River estuary depend on the hydrophysical conditions. Postmortem variations in the concentrations of chemical elements in dead L. macrurus are characterized by a multidirectional nature. The revealed distinctions of the chemical compositions in live and dead L. macrurus represent the features of lifetime and postmortem concentrations of elements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. G. Arashkevich, M. V. Flint, A. B. Nikishina, A. F. Pasternak, A. G. Timonin, J. V. Vasilieva, S. A. Mosharov, and K. A. Soloviev, “The role of zooplankton in the transformation of the organic matter in the Ob estuary, on the shelf, and in the deep regions of the Kara Sea,” Oceanology (Engl. Transl.) 50, 780–792 (2010).Google Scholar
  2. 2.
    V. I. Vernadskii, Living Matter (Nauka, Moscow, 1978) [in Russian].Google Scholar
  3. 3.
    L. L. Demina, Types of Migration of Heavy Metals in the Ocean (Nauka, Moscow, 1982) [in Russian].Google Scholar
  4. 4.
    L. L. Demina, “Quantification of the role of organisms in the geochemical migration of trace metals in the ocean,” Geochem. Int. 53, 224–240 (2015).CrossRefGoogle Scholar
  5. 5.
    L. L. Demina, V. V. Gordeev, S. V. Galkin, M. D. Kravchishina, and S. P. Aleksankina, “The biogeochemistry of some heavy metals and metalloids in the Ob River estuary–Kara Sea section,” Oceanology (Engl. Transl.) 50, 729–742 (2010).Google Scholar
  6. 6.
    L. L. Demina and A. P. Lisitzin, “Role of global biological filters in geochemical migration of trace elements in the ocean: comparative estimation,” Dokl. Earth Sci. 449, 469–473 (2013).CrossRefGoogle Scholar
  7. 7.
    A. V. Drits, A. B. Nikishina, T. N. Semenova, V. M. Sergeeva, K. A. Solovyev, and M. V. Flint, “Spatial distribution and feeding of dominant zooplankton species in the Ob River estuary,” Oceanology (Engl. Transl.) 56, 382–394 (2016).Google Scholar
  8. 8.
    A. G. Zatsepin, P. O. Zavialov, V. V. Kremenetskiy, S. G. Poyarkov, and D. M. Soloviev, “The upper desalinated layer in the Kara Sea,” Oceanology (Engl. Transl.) 50, 657–667 (2010).Google Scholar
  9. 9.
    G. A. Leonova and V. A. Bobrov, Geochemical Role of Plankton of Continental Water Bodies in Siberia in Concentration and Biosedimentation of Microelements (Geo, Novosibirsk, 2012) [in Russian].Google Scholar
  10. 10.
    A. P. Lisitzyn, “Marginal filters and biofilters of the World Ocean,” in Oceanology in the Beginning of 21st Century, Ed. by A. L. Vereshaka (Nauka, Moscow, 2008), pp. 159–224.Google Scholar
  11. 11.
    N. V. Lobus, “The role of molting in mercury removal from an organism of crayfish Astacus leptodactylus L. after chronic intake with food,” Toksikol. Vestn., No. 4, 22–25 (2009).Google Scholar
  12. 12.
    N. V. Lobus, “Elemental composition of zooplankton in the Kara Sea and the bays on the eastern side of Novaya Zemlya,” Oceanology (Engl. Transl.) 56, 809–818 (2016).Google Scholar
  13. 13.
    S. G. Neruchev, Uranium and Life in the History of the Earth (All-Russia Petroleum Research Exploration Institute, St. Petersburg, 2007) [in Russian].Google Scholar
  14. 14.
    A. F. Pasternak, A. V. Drits, G. A. Abyzova, T. N. Semenova, V. M. Sergeeva, and M. V. Flint, “Feeding and distribution of zooplankton in the desalinated “lens” in the Kara Sea: Impact of the vertical salinity gradient,” Oceanology (Engl. Transl.) 55, 863–870 (2015.Google Scholar
  15. 15.
    E. A. Romankevich, “Living matter of the Earth: biogeochemical aspects,” Geokhimiya, No. 2, 292–306 (1988).Google Scholar
  16. 16.
    D. G. Fleishman, Alkaline Elements and Their Radioactive Isotopes in Aquatic Ecosystems (Nauka, Leningrad, 1982) [in Russian].Google Scholar
  17. 17.
    M. V. Flint, T. N. Semenova, E. G. Arashkevich, I. N. Sukhanova, V. I. Gagarin, V. V. Kremenetskiy, M. A. Pivovarov, and K. A. Soloviev, “Structure of the zooplankton communities in the region of the Ob River’s estuarine frontal zone,” Oceanology (Engl. Transl.) 50, 766–779 (2010).Google Scholar
  18. 18.
    S. Beier and S. Bertilsson, “Bacterial chitin degradation–mechanisms and ecophysiological strategies,” Front. Microbiol. 4 (149), 149 (2013). doi 10.3389/fmicb.2013.00149Google Scholar
  19. 19.
    B. Benguella and H. Benaissa, “Effects of competing cations on cadmium biosorption by chitin,” Colloids Surf., A 201 (1), 143–150 (2002).CrossRefGoogle Scholar
  20. 20.
    L. M. Campbell, R. J. Norstrom, K. A. Hobson, et al., “Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay),” Sci. Total Environ. 351, 247–263 (2005).CrossRefGoogle Scholar
  21. 21.
    J. F. Cavaletto, H. A. Vanderploeg, and W. S. Gardner, “Wax esters in two species of freshwater zooplankton,” Limnol. Oceanogr. 34 (4), 785–789 (1989).CrossRefGoogle Scholar
  22. 22.
    C. Y. Chen and C. L. Folt, “High plankton densities reduce mercury biomagnification,” Environ. Sci. Technol. 39 (1), 115–121 (2005).CrossRefGoogle Scholar
  23. 23.
    R. J. Conover and M. Huntley, “Copepods in ice-covered seas–distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas,” J. Mar. Syst. 2, 1–41 (1991).CrossRefGoogle Scholar
  24. 24.
    T. K. Creson, M. L. Woodruff, K. E. Ferslew, et al., “Dose–response effects of chronic lithium regimens on spatial memory in the black molly fish,” Pharmacol. Biochem. Behav. 75 (1), 35–47 (2003).CrossRefGoogle Scholar
  25. 25.
    S. W. Fowler and G. A. Knauer, “Role of large particles in the transport of elements and organic compounds through the oceanic water column,” Progr. Oceanogr. 16 (3), 147–194 (1986).CrossRefGoogle Scholar
  26. 26.
    D. Freese, B. Niehoff, J. E. Søreide, et al., “Seasonal patterns in extracellular ion concentrations and pH of the Arctic copepod Calanus glacialis,” Limnol. Oceanogr. 60 (6), 2121–2129 (2015).CrossRefGoogle Scholar
  27. 27.
    M. Gonzalez-Davila and F. J. Millero, “The adsorption of copper to chitin in seawater,” Geochim. Cosmochim. Acta 54 (3), 761–768 (1990).CrossRefGoogle Scholar
  28. 28.
    M. Gonzalez-Davila, J. M. Santana-Casiano, and F. J. Millero, “The adsorption of Cd (II) and Pb (II) to chitin in seawater,” J. Colloid Interface Sci. 137 (1), 102–110 (1990).CrossRefGoogle Scholar
  29. 29.
    T. Y. Ho, A. Quigg, Z. V. Finkel, et al., “The elemental composition of some marine phytoplankton,” J. Phycol. 36 (6), 1145–1159 (2003).CrossRefGoogle Scholar
  30. 30.
    R. A. Jeffree, F. Carvalho, S. W. Fowler, et al., “Mechanism for enhanced uptake of radionuclides by zooplankton in French Polynesian oligotrophic waters,” Environ. Sci. Technol. 31 (9), 2584–2588 (1997).CrossRefGoogle Scholar
  31. 31.
    K. Kurita, “Chitin and chitosan: functional biopolymers from marine crustaceans,” Mar. Biotechnol. 8 (3), 203–226 (2006).CrossRefGoogle Scholar
  32. 32.
    P. Larsson, L. Okla, and G. Cronberg, “Turnover of polychlorinated biphenyls in an oligotrophic and a eutrophic lake in relation to internal lake processes and atmospheric fallout,” Can. J. Fish. Aquat. Sci. 55 (8), 1926–1937 (1998).CrossRefGoogle Scholar
  33. 33.
    A. Leonard, P. Hantson, and G. B. Gerber, “Mutagenicity, carcinogenicity and teratogenicity of lithium compounds,” Mutat. Res. Rev. Gen. Toxicol. 339 (3), 131–137 (1995).CrossRefGoogle Scholar
  34. 34.
    Y. H. Li and J. E. Shoonmaker, “Chemical composition and mineralogy of marine sediments,” in Treatise on Geochemistry, Vol. 7: Sediments, Diagenesis and Sedimentary Rocks (Pergamon, Oxford, 2003), pp. 1–35.Google Scholar
  35. 35.
    J. H. Martin, “The possible transport of trace metals via moulted copepod exoskeletons,” Limnol. Oceanogr. 15, 756–761 (1970).CrossRefGoogle Scholar
  36. 36.
    P. Mayzaund and J.-L. M. Martin, “Some aspects of the biochemical and mineral composition of marine plankton,” J. Exp. Mar. Biol. Ecol. 17, 297–310 (1975).CrossRefGoogle Scholar
  37. 37.
    K. Ostgaard, A. Jensen, and A. Johnsson, “Lithium ions lengthen the circadian period of growing cultures of the diatom Skeletonema costatum,” Physiol. Plant 55 (3), 285–288 (1982).CrossRefGoogle Scholar
  38. 38.
    P. C. Pickhardt, C. L. Folt, C. Y. Chen, et al., “Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web,” Sci. Total Environ. 339 (1), 89–101 (2005).CrossRefGoogle Scholar
  39. 39.
    P. S. Rainbow, “Ecophysiology of trace metal uptake in Crustaceans,” Estuarine, Coastal Shelf Sci. 44, 169–175 (1997).CrossRefGoogle Scholar
  40. 40.
    P. S. Rainbow, “Trace metal accumulation in marine invertebrates: marine biology or marine chemistry?,” J.Mar. Biol. Assoc. 77, 195–210 (1997).CrossRefGoogle Scholar
  41. 41.
    P. S. Rainbow, “Trace metal concentrations in aquatic invertebrates: why and so what?,” Environ. Pollut. 120, 497–507 (2002).CrossRefGoogle Scholar
  42. 42.
    J. G. Sanders, “Arsenic cycling in marine systems,” Mar. Environ. Res. 3, 257–266 (1980).CrossRefGoogle Scholar
  43. 43.
    M. Ventura, “Linking biochemical and elemental composition in freshwater and marine crustacean zooplankton,” Mar. Ecol.: Progr. Ser. 327, 233–246 (2006).CrossRefGoogle Scholar
  44. 44.
    W. X. Wang and N. S. Fisher, “Accumulation of trace elements in a marine copepod,” Limnol. Oceanogr. 43 (2), 273–283 (1998).CrossRefGoogle Scholar
  45. 45.
    Zooplankton Methodology Manual (Academic Press Limited, London, 2000).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations