, Volume 58, Issue 3, pp 369–380 | Cite as

Estimation of Annual Kara Sea Primary Production

  • A. B. Demidov
  • S. V. Sheberstov
  • V. I. Gagarin
Marine Biology


Primary production of phytoplankton and ice and under-ice flora of the Kara Sea and regions thereof has been assessed using region-specific models and MODIS-Aqua satellite data for 2002–2015. Average annual primary production of phytoplankton calculated for the growing season (April–October) amounted to 165 mg С m–2 day–1. Annual primary production of phytoplankton was 35 g C/m2. Annual primary production of phytoplankton in the entire Kara Sea was 13 × 1012 g C. Annual primary production of ice and underice flora calculated using an integrated biophysical model was 1.7 × 1012 g C, or 12% of total primary production of the Kara Sea; the ice cover dynamics and published data were taken into account for the calculations. The results have been compared to earlier primary production estimates for the Kara Sea. The extent of the increase in sea productivity during warming of the Arctic and the decrease in ice cover area are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biogeochemistry of an Ocean, Ed. by A. S. Monin and A. P. Lisitsyn (Nauka, Moscow, 1983) [in Russian].Google Scholar
  2. 2.
    V. I. Vedernikov, A. B. Demidov, and A. I. Sud’bin, “Primary production and chlorophyll in the Kara Sea in September 1993,” Oceanology (Engl. Transl.) 34, 630–640 (1994).Google Scholar
  3. 3.
    A. A. Vetrov and E. A. Romankevich, “Primary production and fluxes of organic carbon to the seabed in the Russian Arctic seas as a response to the recent warming,” Oceanology (Engl. Transl.) 51, 255–266 (2011).Google Scholar
  4. 4.
    M. E. Vinogradov, “Development of pelagic communities and biotic balance of the ocean,” in Oceanology in the Beginning of 21st Century, Ed. by A. L. Vereshchaka (Nauka, Moscow, 2008), pp. 257–292.Google Scholar
  5. 5.
    M. E. Vinogradov, V. I. Vedernikov, E. A. Romankevich, and A. A. Vetrov, “Components of the carbon cycle in the Russian Arctic seas: primary production and flux of Corg from the photic layer,” Oceanology (Engl. Transl.) 40, 204–215 (2000).Google Scholar
  6. 6.
    A. I. Danyushevskaya, V. I. Petrova, D. S. Yashin, et al., Organic Matter of Bottom Sediments of the Polar Zones of the World Ocean (Nedra, Moscow, 1990) [in Russian].Google Scholar
  7. 7.
    A. B. Demidov, S. A. Mosharov, V. A. Artemyev, A. N. Stupnikova, U. V. Simakova, and S. V. Vazyulya, “Depth-integrated and depth-resolved models of Kara Sea primary production,” Oceanology (Engl. Transl.) 56, 515–526 (2016).Google Scholar
  8. 8.
    A. B. Demidov, S. V. Sheberstov, V. I. Gagarin, and P. V. Khlebopashev, “Seasonal variation of the satellite-derived phytoplankton primary production in the Kara Sea,” Oceanology (Engl. Transl.) 57, 91–104 (2017).Google Scholar
  9. 9.
    A. G. Zatsepin, P. O. Zavialov, V. V. Kremenetskiy, S. G. Poyarkov, and D. M. Soloviev, “The upper desalinated layer in the Kara Sea,” Oceanology (Engl. Transl.) 50, 657–667 (2010).Google Scholar
  10. 10.
    O. A. Kuznetsova, O. V. Kopelevich, S. V. Sheberstov, et al., “Analysis of the chlorophyll concentration in the Kara Sea according to MODIS-AQUA satellite scanner,” Issled. Zemli Kosm., No. 5, 21–31 (2013).Google Scholar
  11. 11.
    A. P. Lisitsyn, “Dispersed sedimentary material in biosphere of the seas and oceans,” in World Ocean, Vol. 2: Physics, Chemistry, and Biology of an Ocean. Sedimentation in the Ocean and Interaction of Geosphere of the Earth, Ed. by R. I. Nigmatulin and L. I. Lobkovskii (Nauchnyi Mir, Moscow, 2014), pp. 424–464.Google Scholar
  12. 12.
    S. A. Mosharov, “Distribution of the primary production and chlorophyll a in the Kara Sea in September of 2007,” Oceanology (Engl. Transl.) 50, 884–892 (2010).Google Scholar
  13. 13.
    S. A. Mosharov, A. B. Demidov, and U. V. Simakova, “Peculiarities of the primary production process in the Kara Sea at the end of the vegetation season,” Oceanology (Engl. Transl.) 56, 84–94 (2016).Google Scholar
  14. 14.
    K. R. Arrigo, D. K. Perovich, R. S. Pickart, et al., “Massive phytoplankton bloom under Arctic Sea ice,” Science 336, 1408 (2012).CrossRefGoogle Scholar
  15. 15.
    K. R. Arrigo, D. K. Perovich, R. S. Pickart, et al., “Phytoplankton blooms beneath the sea ice in the Chukchi Sea,” Deep Sea Res., Part II 105, 1–16 (2014).CrossRefGoogle Scholar
  16. 16.
    K. R. Arrigo and G. L. van Dijken, “Secular trends in Arctic Ocean net primary production,” J. Geophys. Res.: Oceans 116, C09011 (2011). doi 10.1029/2011JC007151Google Scholar
  17. 17.
    K. R. Arrigo and G. L. van Dijken, “Continued increases in Arctic Ocean primary production,” Progr. Oceanogr. 136, 60–70 (2015).CrossRefGoogle Scholar
  18. 18.
    K. R. Arrigo, G. L. van Dijken, and S. Pabi, “Impact of a shrinking Arctic ice cover on marine primary production,” Geophys. Res. Lett. 35 (19), (2008). doi 10.1029/2008GL035028Google Scholar
  19. 19.
    D. G. Barber, J. V. Lukovich, J. Keogak, et al., “The changing climate of the Arctic,” Arctic 61 (1), 7–26 (2008).Google Scholar
  20. 20.
    S. Bélanger, M. Babin, and J.-E. Tremblay, “Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding,” Biogeosciences 10 (6), 4087–4101 (2013).CrossRefGoogle Scholar
  21. 21.
    M. J. Behrenfeld, R. O. O’Malley, D. A. Siegel, et al., “Climate-driven trends in contemporary ocean productivity,” Nature 444, 752–755 (2006).CrossRefGoogle Scholar
  22. 22.
    D. Blondeau-Patissier, J. F. R. Gower, A. G. Dekker, et al., “A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans,” Prog. Oceanogr. 123, 123–144 (2014).CrossRefGoogle Scholar
  23. 23.
    L. Bopp, P. Monfray, O. Aumont, et al., “Potential impact of climate change on marine export primary production,” Global Biogeochem. Cycles 15 (1), 81–99 (2001).CrossRefGoogle Scholar
  24. 24.
    E. Carmack, D. Barber, J. Christensen, et al., “Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves,” Progr. Oceanogr. 71, 145–181 (2006).CrossRefGoogle Scholar
  25. 25.
    M.-E. Carr, M. A. M. Friedrichs, M. Schmeltz, et al., “A comparison of global estimates of marine primary production from ocean color,” Deep Sea Res., Part II 53, 741–770 (2006).CrossRefGoogle Scholar
  26. 26.
    D. J. Cavalieri and C. L. Parkinson, “Arctic sea ice variability and trends, 1979–2010,” Cryosphere 6, 881–889 (2012).CrossRefGoogle Scholar
  27. 27.
    F. P. Chavez, M. Messié, and J. T. Pennington, “Marine primary production in relation to climate variability and change,” Annu. Rev. Mar. Sci. 3, 227–260 (2011).CrossRefGoogle Scholar
  28. 28.
    J. C. Comiso, “The rapid decline of multiyear ice cover,” J. Clim. 25, (2012). doi 10.1175/JCLI-D11-00113.1Google Scholar
  29. 29.
    J. C. Comiso and F. Nishio, “Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data,” J. Geophys. Res.: Oceans 113, C02S07 (2008). doi 10.1029/2007JC0043257Google Scholar
  30. 30.
    J. C. Comiso, C. L. Parkinson, R. Gersten, and L. Stock, “Accelerated decline in the Arctic sea ice cover,” Geophys. Res. Lett. 35, L01703 (2008). doi 10.1029/2007GL031972CrossRefGoogle Scholar
  31. 31.
    G. F. Cota, L. Legendre, M. Gosselin, and R. G. Ingram, “Ecology of bottom ice algae: I. Environmental controls and variability,” J. Mar. Sys. 2, 257–277 (1991).CrossRefGoogle Scholar
  32. 32.
    C. Deal, M. Jin, S. Elliot, et al., “Large-scale modeling of primary production and ice algal biomass within arctic sea ice in 1992,” J. Geophys. Res.: Oceans 116, C07004 (2011). doi 10.1029/2010JC006409CrossRefGoogle Scholar
  33. 33.
    A. B. Demidov, S. A. Mosharov, and P. N. Makkaveev, “Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer,” J. Mar. Sys. 132, 130–149 (2014).CrossRefGoogle Scholar
  34. 34.
    F. Dupont, “Impact of sea-ice biology on overall primary production in a biophysical model of the pan-Arctic Ocean,” J. Geophys. Res.: Oceans 117, C00D17 (2012). doi 10.1029/2011JC006983CrossRefGoogle Scholar
  35. 35.
    S. Falk-Petersen, S. Timofeev, V. Pavlov, and J. R. Sargent, “Climate variability and the effect on Arctic food chains: the role of Calanus,” in Arctic-Alpine Ecosystems and People in a Changing Environment, Ed. by J. B. Ørbak, (Springer-Verlag, Berlin, 2007), pp. 147–166.CrossRefGoogle Scholar
  36. 36.
    A. R. Fay and G. A. McKinley, “Global trends in surface ocean pCO2 from in situ data,” Global Biogeochem. Cycles 27, 541–557 (2013).CrossRefGoogle Scholar
  37. 37.
    R. Frouin, J. McPherson, K. Ueyoshi, and B. A. Franz, “A time series of photosynthethetically available radiation at the ocean surface from SeaWiFS and MODIS data,” Proc. SPIE, (2012). Google Scholar
  38. 38.
    M. Gosselin, M. Levasseur, P. Wheeler, et al., “New measurements of phytoplankton and ice algal production in the Arctic Ocean,” Deep Sea Res., Part II 44, 1623–1644 (1997).CrossRefGoogle Scholar
  39. 39.
    R. Gradinger, “Sea-ice algae: major contributions to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002,” Deep-Sea Res. 56, 1201–1212 (2009).Google Scholar
  40. 40.
    W. W. Gregg, M. E. Conkright, P. Ginoux, et al., “Ocean primary production and climate: Global decadal changes,” Geophys. Res. Lett. 30 (15), 1809 (2003). doi 10.1029/2003GL016889CrossRefGoogle Scholar
  41. 41.
    S. A. Henson, R. Sanders, and E. Madsen, “Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean,” Global Biogeochem. Cycles 26, GB1028 (2012). doi 10.1029/2011GB004099CrossRefGoogle Scholar
  42. 42.
    V. J. Hill, P. A. Matrai, E. Olson, et al., “Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates,” Progr. Oceanogr. 110, 107–125 (2013).CrossRefGoogle Scholar
  43. 43.
    IOCCG, “Remote sensing of ocean color in coastal and other optical-complex waters,” in Reports of the International Ocean-Color Coordinating Group No. 3, Ed. by S. Sathyendranath (MacNab Print, Dartmouth, 2000).Google Scholar
  44. 44.
    IOCCG, “Ocean color remote sensing in polar seas,” in Reports of the International Ocean-Color Coordinating Group No. 16, Ed. by M. Babin (National Oceanic and Atmospheric Administration, Dartmouth, 2015).Google Scholar
  45. 45.
    IPCC, “Climate change 2013: the physical science basis,” in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker (Cambridge University Press, Cambridge, 2013).Google Scholar
  46. 46.
    R. Ji, M. Jin, and Ø. Varpe, “Sea ice phenology and timing of primary production pulses in the Arctic Ocean,” Global Change Biol. 19, 734–741 (2013).CrossRefGoogle Scholar
  47. 47.
    M. Jin, C. J. Deal, S. H. Lee, et al., “Investigation of Arctic sea ice and oceanic primary production for the period 1992–2007 using a 3-D global ice-ocean ecosystem model,” Deep Sea Res., Part II 81–84, 28–35 (2012).Google Scholar
  48. 48.
    M. Jin, C. J. Deal, J. Wang, et al., “Controls of the land fast ice-ocean ecosystem offshore Barrow, Alaska,” Ann. Glaciol. 44, 63–72 (2006).CrossRefGoogle Scholar
  49. 49.
    M. Jin, E. E. Popova, J. Zhang, et al., “Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean,” J. Geophys. Res. 121, 934–948 (2016).CrossRefGoogle Scholar
  50. 50.
    M. Kahru, V. Brotas, M. Manzano-Sarabia, and B. G. Mitchell, “Are phytoplankton blooms occurring earlier in the Arctic?” Global Change Biol. 17, 1733–1739 (2011).CrossRefGoogle Scholar
  51. 51.
    K. A. Kearney, C. Stock, and J. L. Sarmiento, “Amplification and attenuation of increased primary production in a marine food web,” Mar. Ecol.: Progr. Ser. 491, 1–14 (2013).CrossRefGoogle Scholar
  52. 52.
    A. Kubryakov, S. Stanichny, and A. Zatsepin, “River plume dynamics in the Kara Sea from altimetry-based lagrangian model, satellite salinity and chlorophyll data,” Remote Sens. Environ. 176, 177–187 (2016).CrossRefGoogle Scholar
  53. 53.
    R. Kwok, G. F. Cunningham, M. Wensnahan, et al., “Thinning and volume loss of Arctic sea ice: 2003–2008,” J. Geophys. Res.: Oceans 114, C07005 (2009). doi 10.1029/2009JC005312CrossRefGoogle Scholar
  54. 54.
    S. H. Lee, D. A. Stockwell, H.-M. Joo, et al., “Phytoplankton production from melting ponds on Arctic sea ice,” J. Geophys. Res.: Oceans 117, C04030 (2012). doi 10.1029/2011JC007717CrossRefGoogle Scholar
  55. 55.
    L. Legendre, S. F. Ackley, G. S. Dieckmann, et al., “Ecology of sea ice biota: Part 2. Global significance,” Polar Biol. 12, 429–444 (1992).Google Scholar
  56. 56.
    E. Leu, J. E. Søreide, D. O. Hessen, et al., “Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality,” Progr. Oceanogr. 90, 18–32 (2011).CrossRefGoogle Scholar
  57. 57.
    K. M. Lewis, B. G. Mitchell, G. L. van Dijken, and K. R. Arrigo, “Regional chlorophyll a algorithms in the Arctic Ocean and their effect on satellite-derived primary production estimates,” Deep Sea Res., Part II 130, 14–27 (2016).CrossRefGoogle Scholar
  58. 58.
    P. Matrai and S. Apollonio, “New estimates of microalgae based upon nitrate reductions under sea ice in Canadian shelf seas and Canada Basin of the Arctic Ocean,” Mar. Biol. 160, 1297–1309 (2013).CrossRefGoogle Scholar
  59. 59.
    R. May and A. McLean, Theoretical Ecology: Principles and Applications (Oxford, Oxford University Press, 2007).Google Scholar
  60. 60.
    F. A. McLaughlin, E. C. Carmack, W. J. Williams, et al., “Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin, 1993–2007,” J. Geophys. Res.: Oceans 114, C00A12 (2009). doi 10.1029/2008JC005001CrossRefGoogle Scholar
  61. 61.
    D. M. Mikkelsen, S. Søren Rysgaard, and R. Nøhr Glud, “Microalgal composition and primary production in Arctic sea ice: a seasonal study from Kobbefjord (Kangerluarsunnguaq), West Greenland,” Mar. Ecol.: Progr. Ser. 368, 65–74 (2008).CrossRefGoogle Scholar
  62. 62.
    C. J. Mundy, M. Gosselin, E. Jens, et al., “Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea,” Geophys. Res. Lett. 36, L17601 (2009). doi 10.1029/2009GL038837CrossRefGoogle Scholar
  63. 63.
    J. E. Overland and M. Wang, “When will the summer Arctic be nearly sea ice free?” Geophys. Res. Lett. 40 (10), 2097–2101 (2013).CrossRefGoogle Scholar
  64. 64.
    S. Pabi, G. L. van Dijken, and K. R. Arrigo, “Primary production in the Arctic Ocean, 1998–2006,” J. Geophys. Res.: Oceans 113, C08005 (2008). doi 10.1029/2007/JC004578CrossRefGoogle Scholar
  65. 65.
    D. Pauly and V. Christensen, “Primary production required to sustain global fisheries,” Nature 374, 255–257 (1995).CrossRefGoogle Scholar
  66. 66.
    D. Petrenko, D. Pozdnyakov, J. Johannessen, et al., “Satellite-derived multi-year trend in primary production in the Arctic Ocean,” Int. J. Rem. Sens. 34, 3903–3937 (2013).CrossRefGoogle Scholar
  67. 67.
    S. Pivovarov, R. Schlitzer, and A. Novikhin, “River runoff influence on the water mass formation in the Kara Sea,” in Siberian River Run-Off in the Kara Sea, Ed. by R. Stein (Elsevier, Amsterdam, 2003), pp. 9–25.Google Scholar
  68. 68.
    I. V. Polyakov, A. Beszczynska, E. C. Carmack, et al., “One more step toward a warmer Arctic,” Geophys. Res. Lett. 32, LI7605 (2005). doi 10.1029/2005GL023740CrossRefGoogle Scholar
  69. 69.
    I. V. Polyakov, A. V. Pnyushkov, and T. A. Timokhov, “Warming of the intermediate Atlantic Water of the Arctic Ocean in the 2000s,” J. Clim. 25, 8362–8370 (2012).CrossRefGoogle Scholar
  70. 70.
    J. H. Ryther, “Photosynthesis and fish production in the sea. The production of organic matter and its conversion to higher forms of life vary throughout the world ocean,” Science 166, 72–76 (1969).CrossRefGoogle Scholar
  71. 71.
    E. Sakshaug, “Primary and secondary production in the Arctic Seas,” in The Organic Carbon Cycle in the Arctic Ocean, Ed. by R. Stein and R. W. Macdonald (Springer-Verlag, Berlin, 2004), pp. 57–81.CrossRefGoogle Scholar
  72. 72.
    J. L. Sarmiento, R. Slater, R. Barber, et al., “Response of ocean ecosystems to climate warming,” Global Biogeochem. Cycles 18, GB3003 (2004). doi 10.1029/2003GB002134CrossRefGoogle Scholar
  73. 73.
    S. V. Sheberstov and E. A. Lukyanova, “A system for acquisition, processing, and storage of satellite and field biooptical data,” Proceedings of the IV International Conference “Current Problems in Optics of Natural Waters” (Nizhny Novgorod, 2007), pp. 179–183.Google Scholar
  74. 74.
    D. A. Siegel, K. O. Buesseler, S. C. Doney, et al., “Global assessment of ocean carbon export by combining satellite observations and food-web models,” Global Biogeochem. Cycles 28 (3), 181–196 (2014).CrossRefGoogle Scholar
  75. 75.
    D. Slagstad, I. H. Ellingsen, and P. Wassmann, “Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice: an experimental simulation approach,” Progr. Oceanogr. 90, 117–131 (2011).CrossRefGoogle Scholar
  76. 76.
    J. Stroeve, M. Holland, W. Meier, et al., “Arctic sea ice decline: faster than forecast,” Geophys. Res. Lett. 34, L09501 (2007). doi 10.1029/2007GL029703CrossRefGoogle Scholar
  77. 77.
    J. C. Stroeve, V. Kattsov, A. P. Barrett, et al., “Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations,” Geophys. Res. Lett. 39, L16502 (2012). doi 10.1029/2012GL052676CrossRefGoogle Scholar
  78. 78.
    J. C. Stroeve, M. C. Serreze, M. M. Holland, et al., “The Arctic’s rapidly shrinking sea ice cover: a research synthesis,” Clim. Change 110, 1005–1027 (2012).CrossRefGoogle Scholar
  79. 79.
    D. V. Subba Rao and T. Platt, “Primary production of Arctic waters,” Pol. Biol. 3, 191–201 (1984).CrossRefGoogle Scholar
  80. 80.
    J. Taucher and A. Oschlies, “Can we predict the direction of marine primary production change under global warming?” Geophys. Res. Lett. 38, L02603 (2011). doi 10.1029/2010GL045934CrossRefGoogle Scholar
  81. 81.
    J.-É. Tremblay, S. Bélanger, and D. G. Barber, “Climate forcing multiplies biological productivity in the coastal Arctic Ocean,” Geophys. Res. Lett. 38, L18604 (2011). doi 10.1029/2011GL048825Google Scholar
  82. 82.
    J.-É. Tremblay, D. Robert, D. E. Varela, et al., “Current state and trends in Canadian Arctic marine ecosystems: I. Primary production,” Clim. Change, (2012). doi 10.1007/s10584-012-0496-3Google Scholar
  83. 83.
    M. Vancoppenolle, L. Bopp, G. Madec, et al., “Future Arctic Ocean primary productivity from CMIP5 simulations: uncertain outcome, but consistent mechanisms,” Global Biogeochem. Cycle 27, 605–619 (2013). doi 10.1002/gbc.20055CrossRefGoogle Scholar
  84. 84.
    T. Volk and M. I. Hoffert, “Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean driven atmospheric CO2 changes,” in The Carbon Cycle and Atmospheric CO2 Natural Variations Archean to Present, Geophysical Monograph of American Geophysical Union, vol. 32 (American Geophysical Union, Washington, 1985), pp. 99–110.Google Scholar
  85. 85.
    P. Wassmann, C. M. Duarte, S. Agusti, and M. K. Sejr, “Footprints of climate change in the Arctic marine ecosystem,” Global Change Biol., (2010). doi 10.1111/j.1365-2486.2010.02311.xGoogle Scholar
  86. 86.
    P. Wassmann, D. Slagstad, and I. Ellingsen, “Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: preliminary results,” Polar Biol. 33, 1641–1650 (2010).CrossRefGoogle Scholar
  87. 87.
    J. Zhang, C. Ashjian, R. Campbell, et al., “The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves,” J. Geophys. Res. 119, 297–312 (2014). doi 10.1002/2013JC009301CrossRefGoogle Scholar
  88. 88.
    L. A. Zenkevitch, Biology of the seas of the USSR (George Allen and Unwin, London, 1963).Google Scholar
  89. 89.
    J. Zhang, Y. H. Spitz, M. Steele, et al., “Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem,” J. Geophys. Res.: Oceans 115, C10015 (2010). doi 10.1029/2009/JC005387CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. B. Demidov
    • 1
  • S. V. Sheberstov
    • 1
  • V. I. Gagarin
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations