, Volume 57, Issue 6, pp 763–771 | Cite as

Detection of Intermediate Mediterranean Waters in the Atlantic Ocean by ARGO Floats Data

  • B. N. Filyushkin
  • K. V. Lebedev
  • N. G. Kozhelupova
Marine Physics


Peculiarities of the spatial distribution of intermediate Mediterranean waters (MW), which are the main source to maintain the heat and salt budgets at depths of 600–1500 m in the Atlantic Ocean, have been studied using the ARGO floats measurements database. About 75000 temperature and salinity profiles recorded by 900 ARGO floats in 2005–2014 in the Atlantic Ocean for latitudes from 20° to 50° N were used. To process these data, we used the ARGO-Based Model for Investigation of the Global Ocean (AMIGO). This technique allowed us for the first time to obtain a complete set of oceanographic characteristics up to a depth of 2000 m for different time averaging intervals (month, season, years). Joint analysis of the temperature, salinity, and velocity distributions at 700–1000 m depths made it possible to revise the distribution of MW and their penetration into the western part of the ocean across the Mid-Atlantic Ridge (MAR). It is shown that at depths of 700 and 1000 m, the Mid-Atlantic Ridge is a barrier to advective propagation of salty waters (>35.5 PSU) to the west and is transparent to fragments of destroyed intrathermocline lenses (ITL) with lower salinity (<35.4 PSU). In the Atlantic region, from 20° to 35° N and from 30° to 70° W, individual lens profiles with an anomalous salinity distribution were sought using ARGO measurements to detect ITL and its separate fragments. About 24 000 measurements from 370 ARGO floats were analyzed, and only about 3% of them showed weak salinity anomalies at 800–1200 m depths. No ITL were found from these observations. Analysis of long-term drifting of individual floats recording temperature and salinity profiles with anomalous layers made it possible to study the nature of MW transport through the MAR.


  1. 1.
    I. M. Belkin, M. V. Emel’yanov, A. G. Kostyanoi, and K. N. Fedorov, “Thermohaline structure of intermediate waters of the ocean and intrathermocline vortices,” in Intratermocline Vortices in the Ocean (Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, 1986), pp. 8–34.Google Scholar
  2. 2.
    V. A. Bubnov, “Structure and dynamics of Mediterranean waters in the Atlantic Ocean,” Okeanol. Issled. 22, 220–278 (1971).Google Scholar
  3. 3.
    A. S. Vinogradov and Yu. Kh. Pavel’son, “Thin stratification of the waters of the Sargasso Sea under the main thermocline,” Okeanol. Issled. 31, 56–63 (1980).Google Scholar
  4. 4.
    A. N. Demidov, B. N. Filyushkin, and N. G. Kozhelupova, “Detection of Mediterranean lenses in the Atlantic Ocean by profilers of the Argo project,” Oceanology (Engl. Transl.) 52, 171–180 (2012).Google Scholar
  5. 5.
    L. A. Dykhno, E. G. Morozov, S. V. Nikitin, et al., “The lens destruction of Mediterranean water interacting with the bottom relief,” Okeanologiya (Moscow) 31, 38–41 (1991).Google Scholar
  6. 6.
    V. D. Egorikhin, Yu. A. Ivanov, V. G. Kort, et al., “Interthermocline lens of Mediterranean waters in the tropical part of the North Atlantic,” Okeanologiya (Moscow) 27, 165–175 (1987).Google Scholar
  7. 7.
    V. I. Kuksa, Intermediate Waters of the World Ocean (Gidrometeoizdat, Leningrad, 1983) [in Russian].Google Scholar
  8. 8.
    K. V. Lebedev, “An Argo-based model for investigation of the Global Ocean (AMIGO),” Oceanology (Engl. Transl.) 56, 172–181 (2016).Google Scholar
  9. 9.
    B. N. Filyushkin, D. L. Aleinik, V. M. Gruzinov, and N. G. Kozhelupova, “Dynamic degradation of the Mediterranean lenses in the Atlantic Ocean,” Dokl. Earth Sci. 387, 1079–1082 (2002).Google Scholar
  10. 10.
    B. N. Filyushkin, D. L. Aleinik, N. G. Kozhelupova, and S. N. Moshonkin, “Specific horizontal transport of Mediterranean waters in the Atlantic Ocean,” Tr. Gos. Okeanogr. Inst., No. 212, 76–88 (2009).Google Scholar
  11. 11.
    B. N. Filyushkin, D. L. Aleinik, A. N. Demidov, et al., “Specific formation and distribution of the Mediterranean water mass at intermediate depths of the Atlantic Ocean,” in Water Masses of the Oceans and Seas (MAKS-Press, Moscow, 2007), pp. 92–129.Google Scholar
  12. 12.
    B. N. Filyushkin, S. N. Moshonkin, and N. G. Kozhelupova, “The long-term evolution of the Mediterranean Sea water inflow into the North Atlantic,” in Touching the Ocean (Moscow, 2013), pp. 77–94.Google Scholar
  13. 13.
    G. I. Shapiro, S. L. Meshchanov, M. V. Emel’yanov, et al., “Lens of Mediterranean waters after a collision with underwater ridges,” Okeanologiya (Moscow) 32, 420–427 (1992).Google Scholar
  14. 14.
    M. A. Arhan, A. Colin de Verdiere, and L. Memery, “The eastern, boundary of the subtropical North Atlantic,” J. Phys. Oceanogr. 24 (6), 1295–1316 (1994).CrossRefGoogle Scholar
  15. 15.
    L. Armi and H. Stommel, “Four views of a portion of the North Atlantic subtropical gyre,” J. Phys. Oceanogr. 13 (5), 828–857 (1983).CrossRefGoogle Scholar
  16. 16.
    I. Bashmachnikov, F. Neves, T. Calheiros, and X. Carton, “Properties and pathways of Mediterranean water eddies in the Atlantic,” Progr. Oceanogr. 137, 149–172 (2015).CrossRefGoogle Scholar
  17. 17.
    H. L. Bryden, J. Candela, and T. H. Kinder, “Exchange through the Strait of Gibraltar,” Progr. Oceanogr. 33, 201–248 (1994).CrossRefGoogle Scholar
  18. 18.
    J. P. Dugun, R. P. Mied, P. C. Mignerey, and A. F. Schuetz, “Compact, intrathermocline eddies in the Sargasso Sea,” J. Geophys. Res.: Oceans 87 (1), 385–393 (1982).CrossRefGoogle Scholar
  19. 19.
    B. N. Filyushkin and M. A. Sokolovskiy, “Modeling the evolution of intrathermocline lenses in the Atlantic Ocean,” J. Mar. Res. 69, 191–220 (2011).CrossRefGoogle Scholar
  20. 20.
    J. Gardcia-Lafuente, J. Delgado, A. Sanchez, et al., “Interannual variability of the Mediterranean outflow observed in Espartel sill, western Strait of Gibraltar,” J. Geophys. Res. 114 (10), C10018 (2009). doi 10.1029/2009JC005496CrossRefGoogle Scholar
  21. 21.
    J. P. Maze, M. Arhan, and H. Mercier, “Volume budget of the eastern boundary layer off the Iberian Peninsula,” Deep Sea Res., Part I 44 (9–10), 1543–1574 (1997).CrossRefGoogle Scholar
  22. 22.
    S. E. McDowell and T. Rossby, “Mediterranean water: an intense mesoscale eddy off the Bahamas,” Science 202, 1085–1087 (1978).CrossRefGoogle Scholar
  23. 23.
    S. E. McDowell, “On the origin of eddies discovered during the POLYMODE local dynamics experiment,” J. Phys. Oceanogr. 16 (3), 632–652 (1986).CrossRefGoogle Scholar
  24. 24.
    E. J. Katz, “Diffusion of the core Mediterranean Water above the Mid-Atlantic Ridge Crest,” Deep-Sea Res. 17, 611–625 (1970).Google Scholar
  25. 25.
    M. D. Prater and T. Rossby, “An alternative hypothesis for the origin of the “Mediterranean” salt lens observed off the Bahamas in the fall of 1976,” J. Phys. Oceanogr. 29 (8), 2103–2109 (1999).CrossRefGoogle Scholar
  26. 26.
    P. L. Richardson, D. Walsh, L. Armi, et al., “Tracking three Meddies with SOFAR floats,” J. Phys. Oceanogr. 19 (3), 371–383 (1989).CrossRefGoogle Scholar
  27. 27.
    P. L. Richardson and A. Tychensky, “Meddy trajectories in the Canary Basin measured during the SEMAPHORE experiment, 1993–1995,” J. Geophys. Res.: Oceans 103 (10), 25029–25045 (1998).CrossRefGoogle Scholar
  28. 28.
    T. Rossby, S. C. Riser, and A. J. Mariano, “The western North Atlantic—a Lagrangian viewpoint,” in Eddies in Marine Science, Ed. by A. R. Robinson (Springer-Verlag, Berlin, 1983), pp. 66–91.CrossRefGoogle Scholar
  29. 29.
    A. Sanchez-Roman, G. Sannino, J. Garcia-Lafuente, et al., “Transport estimates at the western section of the Strait of Gibraltar: a combined experimental and numeral modeling study,” J. Geophys. Res.: Oceans 114 (6), C06002 (2009). doi 10.1029/2008JC005023Google Scholar
  30. 30.
    G. I. Shapiro and S. L. Meschanov, “Spreading pattern and mesoscale structure of Mediterranean outflow in the Iberian Basin estimated from historical data,” J. Mar. Sys. 7, 337–348 (1996).CrossRefGoogle Scholar
  31. 31.
    M. A. Sokolovskiy, B. N. Filyushkin, and X. J. Carton, “Dynamics of intrathermocline vortices in a gyre flow over a seamount chain,” Ocean Dyn. 63 (7), 741–760 (2013).CrossRefGoogle Scholar
  32. 32.
    M. Sparrow, O. Boebel, V. Zervakis, et al., “Two circulation regimes of Mediterranean outflow revealed by Lagrangian measurements,” J. Phys. Oceanogr. 32 (5), 1322–1330 (2002).CrossRefGoogle Scholar
  33. 33.
    R. Zantopp and K. Leaman, “Gulf of Cadiz water observed in a thermocline eddy in the western North Atlantic,” J. Geophys. Res.: Oceans 87 (3), 1927–1934 (1982).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • B. N. Filyushkin
    • 1
  • K. V. Lebedev
    • 1
  • N. G. Kozhelupova
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations