, Volume 57, Issue 5, pp 700–706 | Cite as

Probable limits of sea ice extent in the northwestern Subarctic Pacific during the last glacial maximum

  • A. G. Matul
Marine Geology


The article summarizes and analyzes published data on the distribution of sea-ice and open-ocean diatoms in 42 cores of bottom sediments from the northwestern part of the Subarctic Pacific that accumulated during the last glacial maximum (LGM). Based on micropaleontological records, the extent of winter sea ice during the LGM could be limited to the Okhotsk and Bering seas. During the warm season, the surface water masses from the open Subarctic Pacific spread widely in the marginal seas.


  1. 1.
    V. S. Arsen’ev, The Currents and Water Masses of the Bering Sea (Nauka, Moscow, 1967) [in Russian].Google Scholar
  2. 2.
    M. S. Barash, “The boundary of floating ice in the North Atlantic in the Upper Pleistocene,” Oceanology (Engl. Transl.) 14, 846–851 (1974).Google Scholar
  3. 3.
    Yu. P. Vasilenko, S. A. Gorbarenko, and Ts. Tszou, “Ice cover of the Sea of Okhotsk in Late Pleistocene glaciation and Holocene,” Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, No. 2, 70–77 (2011).Google Scholar
  4. 4.
    A. D. Dobrovol’skii and B. S. Zalogin, The Seas of the Soviet Union (Moscow State Univ., Moscow, 1982) [in Russian].Google Scholar
  5. 5.
    A. P. Zhuze, Stratigraphic and Paleogeographic Studies in the Northwestern Part of Pacific Ocean (Academy of Sciences of USSR, Moscow, 1962) [in Russian].Google Scholar
  6. 6.
    A. P. Lisitsyn, Glacial Sedimentation in the World Ocean (Nauka, Moscow, 1994) [in Russian].Google Scholar
  7. 7.
    A. G. Matul, V. V. Mukhina, S. A. Gorbarenko, and V. Yu. Leskov, “The Quaternary micropaleontological and lithophysical records in the sediments of the northern part of the Sea of Okhotsk,” Oceanology (Engl. Transl.) 43, 551–560 (2003).Google Scholar
  8. 8.
    I. A. Mel’nikov and L. L. Bondarchuk, “The ecology of mass accumulations of colonial diatoms under Arctic drifting ice,” Okeanologiya (Moscow) 27, 317–321 (1987).Google Scholar
  9. 9.
    V. V. Mukhina and A. G. Matul, “Late Quaternary diatom stratigraphy and paleoceanology of the Deryugin Basin (Sea of Okhotsk) during the Last Glacial Maximum,” Oceanology (Engl. Transl.) 49, 558–566 (2009).Google Scholar
  10. 10.
    E. A. Ovsepyan, E. V. Ivanova, L. O. Murdmaa, and G. N. Alekhina, “Sea-surface bioproductivity changes in the Northwest Pacific over the last 25 kyr,” Oceanology (Engl. Transl.) 54, 505–518 (2014).Google Scholar
  11. 11.
    S. P. Pletnev, M. V. Cherepanova, E. D. Ivanova, I. V. Utkin, Ya. V. Kuz’min, and G. S. Burr, “Biostratigraphy of Upper Quaternary sediments in the southern part of the Oceanology Institute Rise, Sea of Okhotsk,” Stratigr. Geol. Correl. 18, 450–463 (2010).CrossRefGoogle Scholar
  12. 12.
    I. D. Rostov, G. I. Yurasov, N. I. Rudykh, et al., Atlas of Oceanography of the Bering, Okhotsk, and Japan Seas (Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 2007). htm.Google Scholar
  13. 13.
    M. A. Smirnova, G. K. Kazarina, A. G. Matul, and L. Max, “Diatom evidence for paleoclimate changes in the northwestern Pacific during the last 20000 years,” Oceanology (Engl. Transl.) 55, 383–389 (2015).Google Scholar
  14. 14.
    S. T. Belt, Massé G., S. J. Rowland, et al., “A novel chemical fossil of palaeo sea ice: IP25,” Org. Geochem. 38, 16–27 (2007).CrossRefGoogle Scholar
  15. 15.
    G. R. Bigg, C. D. Clark, and A. L. C. Hughes, “A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction,” Earth Planet. Sci. Lett. 265, 559–570 (2008).CrossRefGoogle Scholar
  16. 16.
    A. B. G. Bush and S. G. H. Philander, “The climate of the Last Glacial Maximum: Results from a coupled atmosphere-ocean general circulation model,” J. Geophys. Res.: Atmos. 104 (20), 24509–24525 (1999).CrossRefGoogle Scholar
  17. 17.
    B. E. Caissie, J. Brigham-Grette, K. T. Lawrence, et al., “Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records,” Paleoceanography 25 (PA1206), (2010). doi 10.1029/2008PA001671Google Scholar
  18. 18.
    D. J. Cavalieri and C. L. Parkinson, “On the relationship between atmospheric circulation and the fluctuations in the sea ice extents of the Bering and Okhotsk Seas,” J. Geophys. Res.: Oceans 92 (7), 7141–7162 (1987).CrossRefGoogle Scholar
  19. 19.
    D. L. Clark and A. Hanson, “Central Arctic Ocean sediment textures: a key to ice transport mechanism,” in Glacial-Marine Sedimentation, Ed. by B. Molnia (Plenum, New York, 1983), pp. 301–330.CrossRefGoogle Scholar
  20. 20.
    J. R. Conolly and M. Ewing, “Ice-rafted detritus in northwest Pacific deep-sea sediments,” in Geological Investigations of the North Pacific, Ed. by J. D. Hays (Geological Society of America, Boulder, 1970), pp. 219–231.CrossRefGoogle Scholar
  21. 21.
    M. S. Cook, L. D. Keigwin, and C. A. Sancetta, “The deglacial history of surface and intermediate water of the Bering Sea,” Deep Sea Res., Part II 52, 2163–2173 (2005).CrossRefGoogle Scholar
  22. 22.
    A. De Vernal and T. F. Pedersen, “Micropaleontology and palynology of core PAR87A-10: a 23000 year record of paleoenvironmental changes in the Gulf of Alaska, northeast North Pacific,” Paleoceanography 12 (6), 821–830 (1997).CrossRefGoogle Scholar
  23. 23.
    A. De Vernal, C. Hillaire-Marcel, S. Solignac, et al., “Reconstructing Sea Ice Conditions in the Arctic and Sub-Arctic Prior to Human Observations, in Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Ed. by E. T. DeWeaver, (American Geophysical Union, Washington, 2008), pp. 27–45.Google Scholar
  24. 24.
    R. Gersonde and A. De Vernal, “Reconstruction of past sea ice extent,” PAGES News 21 (1), 30–31 (2013).CrossRefGoogle Scholar
  25. 25.
    S. A. Gorbarenko, “Stable isotope and lithologic evidence of Late Glacial and Holocene oceanography of the Northwestern Pacific and its marginal seas,” Quat. Res. 46, 230–250 (1996).CrossRefGoogle Scholar
  26. 26.
    S. A. Gorbarenko, I. A. Basov, M. P. Chekhovskaya, and J. Southon, “Orbital and millennium scale environmental changes in the southern Bering Sea during last glacial-Holocene: geochemical and paleontological evidences,” Deep Sea Res., Part II 52, 2174–2185 (2005).CrossRefGoogle Scholar
  27. 27.
    S. A. Gorbarenko, P. Wang, R. Wang, and X. Cheng, “Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 286, 97–106 (2010).CrossRefGoogle Scholar
  28. 28.
    J. R. Hein, A. S. Bychkov, and A. E. Gibbs, Data and Results from R.V. Aleksandr Vinogradov Cruises 91-av-19/1, North Pacific Hydrochemistry Transect; 91-av-19/2, North Equatorial Pacific Karin Ridge Fe–Mn Crust Studies; and 91-av-19/4, Northwest Pacific and Bering Sea Sediment Geochemistry and Paleoceanographic Studies: U.S. Geological Survey, Open File Report 94-230 (US Department of the Interior, Washington, 1994).Google Scholar
  29. 29.
    L. E. Heusser and J. J. Morley, “Monsoon fluctuations over the past 350 kyr: high-resolution evidence from Northeast Asia/Northwest Pacific climate proxies (marine pollen and radiolarians),” Quat. Sci. Rev. 16, 565–581 (1997).CrossRefGoogle Scholar
  30. 30.
    S. H. Kang and G. A. Fryxell, “Fragilariopsis cylindrus (Grunow) Krieger: the most abundant diatom in water column assemblages of Antarctic marginal ice-edge zones,” Polar Biol. 12, 609–627 (1992).CrossRefGoogle Scholar
  31. 31.
    K. Katsuki and K. Takahashi, “Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary,” Deep Sea Res., Part II 52, 2110–2130 (2005).CrossRefGoogle Scholar
  32. 32.
    S.-J. Kim and Y.-G. Park, “Glacial ocean circulation and property changes in the North Pacific,” Atmos.-Ocean. 46, 257–275 (2008).CrossRefGoogle Scholar
  33. 33.
    N. Lundholm and G. R. Hasle, “Fragilariopsis (Bacillariophyceae) of the Northern Hemisphere—morphology, taxonomy, phylogeny and distribution, with a description of F. pacifica sp. nov.,” Phycologia 49 (5), 438–460 (2010).CrossRefGoogle Scholar
  34. 34.
    MARGO Project Members, “Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum,” Nat. Geosci. 2, 127–132 (2009).CrossRefGoogle Scholar
  35. 35.
    D. G. Martinson, N. G. Pisias, and J. D. Hays, “Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300 000-year chronostratigraphy,” Quat. Res. 27, 1–30 (1987).CrossRefGoogle Scholar
  36. 36.
    L. Max, J.-R. Riethdorf, R. Tiedemann, et al., “Sea surface temperature variability and sea-ice extent in the subarctic Northwest Pacific during the past 15.000 years,” Paleoceanography 27 (PA3213), (2012). doi 10.1029/ 2012PA002292Google Scholar
  37. 37.
    T. C. Moore Jr, L. H. Burckle, K. Geitzenauer, et al., “The reconstruction of sea surface temperatures in the Pacific Ocean of 18 000 B.P.,” Mar. Micropaleontol. 5, 215–247 (1980).CrossRefGoogle Scholar
  38. 38.
    D. Nürnberg, D. Dethleff, R. Tiedemann, et al., “Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka—evidence from ice-rafted debris and planktonic δ18O,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 310, 191–205 (2011).CrossRefGoogle Scholar
  39. 39.
    K. Ohtani, “Relative transport in the Alaskan Stream in winter,” J. Oceanogr. Soc. Jpn. 26 (5), 271–282 (1970).CrossRefGoogle Scholar
  40. 40.
    Y. Okazaki, K. Takahashi, K. Katsuki, et al., “Late Quaternary paleoceanographic changes in the southwestern Okhotsk Sea: evidence from geochemical, radiolarian, and diatom records,” Deep Sea Res., Part II 52, 2332–2350 (2005).CrossRefGoogle Scholar
  41. 41.
    R. O. Ramseier, C. Garrity, E. Bauerfeind, and R. Peinert, “Sea-ice impact on long-term particle flux in the Greenland Sea’s Odden–Nordbukta region, 1985–1996,” J. Geophys. Res.: Oceans 104 (3), 5329–5343 (1999).CrossRefGoogle Scholar
  42. 42.
    J. Ren, R. Gersonde, O. Esper, and C. A. Sancetta, “Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 402, 81–103 (2014).CrossRefGoogle Scholar
  43. 43.
    J.-R. Riethdorf, L. Max, D. Nürnberg, et al., “Deglacial development of (sub) sea surface temperature and salinity in the subarctic northwest Pacific: implications for upper-ocean stratification,” Paleoceanography 28, 91–104 (2013). doi 10.1002/palo.20014CrossRefGoogle Scholar
  44. 44.
    J. H. Robertson, PhD Thesis (Columbia University, New York, 1975).Google Scholar
  45. 45.
    R. Röthlisberger and N. Abram, “Sea-ice proxies in Antarctic ice cores,” PAGES News 17 (1), 24–26 (2009).Google Scholar
  46. 46.
    T. Sakamoto, M. Ikehara, K. Aoki, et al., “Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100 kyrs in the Okhotsk Sea,” Deep Sea Res., Part II 52, 2275–2301 (2005).CrossRefGoogle Scholar
  47. 47.
    C. A. Sancetta and S. W. Robinson, “Diatom evidence on Wisconsin and Holocene events in the Bering Sea,” Quat. Res. 20 (2), 232–245 (1983).CrossRefGoogle Scholar
  48. 48.
    M. Sarnthein, U. Pflaumann, and M. Weinelt, “Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates,” Paleoceanography 18 (2), (2003). doi 10.1029/2002PA000771Google Scholar
  49. 49.
    K. Shiga and I. Koizumi, “Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom records,” Marine Micropaleontol. 38, 91–117 (2000).CrossRefGoogle Scholar
  50. 50.
    E. E. Syvertsen, “Ice algae in the Barents Sea: types of assemblages, origin, fate and role in the ice edge phytoplankton bloom,” Polar Res. 10 (1), 277–287 (1991).CrossRefGoogle Scholar
  51. 51.
    K. E. K. St. John and L. A. Krissek, “Regional patterns of Pleistocene ice-rafted debris flux in the North Pacific,” Paleoceanography 14 (5), 653–662 (1999).CrossRefGoogle Scholar
  52. 52.
    W. Yanase and A. Abe-Ouchi, “The LGM surface climate and atmospheric circulation over East Asia and the North Pacific in the PMIP2 coupled model simulations,” Clim. Past. 3, 439–451 (2007).CrossRefGoogle Scholar
  53. 53.
    M. Uda, “Oceanography of the subarctic Pacific Ocean,” J. Fish. Res. Board Can. 20, 119–179 (1963).CrossRefGoogle Scholar
  54. 54.
    W.-L. Wang and L.-C. Wang, “Reconstruction of oceanographic changes based on the diatom records of the central Okhotsk Sea over the last 500000 years,” Terr., Atmos. Ocean. Sci. 19 (4), 403–411 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations