, Volume 56, Issue 3, pp 326–335 | Cite as

Winter convection in the Irminger Sea in 2004–2014

  • S. V. Gladyshev
  • V. S. Gladyshev
  • A. S. Falina
  • A. A. Sarafanov
Marine Physics


Winter convection in the Irminger Sea leading to the formation of Labrador Sea Water (LSW) is analyzed using CTD data collected along the 59.5° N transatlantic section in 2004–2014, winter Argo data from 2012–2014, and daily North American regional reanalysis (NARR). The interannual variability of LSW in the Irminger Sea is investigated. The dissolved oxygen saturation rate of 93% is used to indicate maximal local convection depth. It is shown that the deepest convection (up to 1000 m) resulting in the largest LSW volume that formed in the Irminger Sea in 2008 and 2012. These years were characterized by numerous storms with anomalously strong turbulent heat loss from the ocean to the atmosphere and negative air temperature to the east of the southern tip of Greenland in January–March. LSW became warmer by 0.42°C, saltier by more than 0.03 PSU, and more oxygenated by 8 µmol/kg between 2004 and 2014. A strong LSW decay in the Iceland Basin is also noted.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Lappo, A. V. Sokov, V. P. Tereshchenkov, and S. A. Dobrolyubov, “Cooling and desalination of intermediate and abyssal waters in the western part of the north Atlantic as the beginning of the 1990s,” Dokl. Ross. Akad. Nauk 347 (4), 548–551 (1996).Google Scholar
  2. 2.
    A. S. Falina, A. A. Sarafanov, and A. V. Sokov, “On the renewal of Labrador Sea water in the Irminger basin,” Oceanology (Engl. Transl.) 47 (4), 494–499 (2007).Google Scholar
  3. 3.
    S. Bacon, W. J. Gould, and Y. L. Jia, “Open-ocean convection in the Irminger Sea,” Geophys. Res. Lett. 30 (5), 1246 (2003). doi 10.1029/2002GL016271CrossRefGoogle Scholar
  4. 4.
    R. A. Clarke and A. R. Coote, “The formation of Labrador Sea water. Part III: The evolution of oxygen and nutrient concentration,” J. Phys. Oceanogr. 18 (3), 469–480 (1988).CrossRefGoogle Scholar
  5. 5.
    M. F. de Jong, H. M. van Aken, K. Vage, and R. S. Pickart, “Convective mixing in the central Irminger Sea: 2002–2010,” Deep-Sea Res. 63, 36–51 (2012). doi 10.1016/j.dsr.2012.01.003CrossRefGoogle Scholar
  6. 6.
    J. D. Doyle and M. A. Shapiro, “Flow response to largescale topography: the Greenland tip jet,” Tellus A, 51, 728–748 (1999). doi 10.1034/j.1600-0870.1996.00014.xCrossRefGoogle Scholar
  7. 7.
    A. Falina, A. Sarafanov, and A. Sokov, “Variability and renewal of Labrador Sea water in the Irminger Basin in 1991–2004,” J. Geophys. Res., C: Oceans Atmos. 112 (01006), (2007). doi 10.1029/2005JC003348Google Scholar
  8. 8.
    D. Kieke and I. Yashayaev, “Studies of Labrador Sea water formation and variability in the subpolar North Atlantic in the light of international partnership and collaboration,” Progr. Oceanogr. 132 (3), 220–232 (2015). Scholar
  9. 9.
    R. S. Pickart, M. A. Spall, M. H. Ribergaard, et al., “Deep convection in the Irminger Sea forced by the Greenland tip jet,” Nature 424, 152–156 (2003).CrossRefGoogle Scholar
  10. 10.
    R. S. Pickart, F. Straneo, and G. W. K. Moore, “Is Labrador Sea water formed in the Irminger Basin?” Deep-Sea Res. 50, 23–52 (2003).CrossRefGoogle Scholar
  11. 11.
    R. S. Pickart, D. J. Torres, and R. A. Clarke, “Hydrography of the Labrador Sea during active convection,” J. Phys. Oceanogr. 32 (3), 428–457 (2002).CrossRefGoogle Scholar
  12. 12.
    A. Sarafanov, A. Sokov, Demidov A., and A. Falina, “Warming and salinification of intermediate and deep waters in the Irminger Sea and the Iceland Basin in 1997–2006,” Geophys. Res. Lett. 34 (23609), (2007). doi 10.1029/2007GL031074Google Scholar
  13. 13.
    A. Sarafanov, A. Falina, H. Mercier, et al., “Mean fulldepth summer circulation and transports at the northern periphery of the Atlantic Ocean in the 2000s,” J. Geophys. Res., C: Oceans Atmos. 117 (01014), (2012). doi 10.1029/2011JC007572Google Scholar
  14. 14.
    L. D. Talley and M. S. McCartney, “Distribution and circulation of Labrador Sea water,” J. Phys. Oceanogr. 12 (11), 1189–1205 (1982).CrossRefGoogle Scholar
  15. 15.
    K. Vage and R. S. Pickart, “Winter mixed layer development in the Central Irminger Sea: the effect of strong, intermittent wind events,” J. Phys. Oceanogr. 38 (3), 541–565 (2008). doi 10.1175/2007JPO3678.1CrossRefGoogle Scholar
  16. 16.
    K. Vage, R. S. Pickart, A. Sarafanov, et al., “The Irminger Gyre: circulation, convection, and interannual variability,” Deep-Sea Res. 58, 590–614 (2011). doi 10.1016/j.dsr.2011.03.001CrossRefGoogle Scholar
  17. 17.
    K. Vage, R. S. Pickart, V. Thierry, et al., “Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008,” Nat. Geosci. 2, 67–72 (2009). doi 10.1038/NGEO382CrossRefGoogle Scholar
  18. 18.
    K. Vage, T. Spengler, H. C. Davies, and R. S. Pickart, “Multi-event analysis of the westerly Greenland tip jet based upon 45 winters in ERA-40,” Quart. J. R. Met. Soc. 135, 1999–2011 (2009). doi 10.1002/qj.488CrossRefGoogle Scholar
  19. 19.
    H. M. van Aken, M. F. de Jong, and I. Yashayaev, “Decadal and multi-decadal variability of Labrador Sea water in the north-western North Atlantic Ocean derived from tracer distributions: Heat budget, ventilation, and advection,” Deep-Sea Res. 58, 505–523 (2011). doi 10.1016/j.dsr.2011.02.008CrossRefGoogle Scholar
  20. 20.
    I. Yashayaev, “Hydrographic changes in the Labrador Sea, 1960–2005,” Progr. Oceanogr. 73, 242–276 (2007). doi 10.1016/j.pocean.2007.04.015CrossRefGoogle Scholar
  21. 21.
    I. Yashayaev, M. Bersch, and H. M. van Aken, “Spreading of the Labrador Sea water to the Irminger and Iceland basins,” Geophys. Res. Lett. 34 (10602), (2007). doi 10.1029/2006GL028999Google Scholar
  22. 22.
    I. Yashayaev and J. W. Loder, “Enhanced production of Labrador Sea water in 2008,” Geophys. Res. Lett. 36 (01606), (2009). doi 10.1029/2008GL036162Google Scholar
  23. 23.
    I. Yashayaev, H. M. van Aken, N. P. Holliday, and M. Bersch, “Transformation of the Labrador Sea water in the subpolar North Atlantic,” Geophys. Res. Lett. 34 (22605), (2007). doi 10.1029/2007GL031812Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • S. V. Gladyshev
    • 1
  • V. S. Gladyshev
    • 1
  • A. S. Falina
    • 1
  • A. A. Sarafanov
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations