Advertisement

Oceanology

, Volume 56, Issue 1, pp 118–130 | Cite as

Postglacial paleoceanographic environments in the Barents and Baltic seas

  • E. V. IvanovaEmail author
  • I. O. Murdmaa
  • E. M. Emelyanov
  • E. A. Seitkalieva
  • E. P. Radionova
  • G. N. Alekhina
  • S. M. Sloistov
Marine Geology

Abstract

This paper presents reconstructions of ice sheet boundaries, lacustrine and marine paleobasins, as well as the connections of the Barents and Baltic seas with the North Atlantic from the Last Glacial Maximum to the Holocene. The reconstructions are based on original and published data obtained from the northern and western parts of the Barents Sea and Baltic depressions with account for the available regional schematic maps of deglaciation. The early deglaciation of the Scandinavian–Barents ice sheet culminated with the Bølling-Allerød interstadial (14.5–12.9 cal ka BP), which was characterized by a more vigorous Atlantic meridional overturning circulation (AMOC) and a corresponding increase in surface Atlantic water inflow into the Barents Sea through deep troughs. The Baltic Ice Lake (BIL) remained a dammed-up isolated basin during deglaciation from 16.0 to 11.7 cal ka BP. In the Younger Dryas (YD), the lake drained into the North Sea and was replaced by a brackish Yoldia Sea (YS) at the beginning of the Holocene (Preboreal, 11.7–10.7 cal ka BP), due to a limited connection between two basins through the Närke Strait. In the Barents Sea, the next increase in the Atlantic water influx into the deep basins corresponded to terminal YD and Preboreal events with a culmination in the Early Holocene. The Yoldia Sea became a lake again during the next stage, the Ancylus (~10.7–8.8 cal ka BP). Atlantic water inflow both into the Barents and Baltic seas varied during the Holocene, with a maximum contribution in the Early Holocene, when the Littorina Sea (LS, 8–4 cal ka BP) connection with the North Sea via the Danish Straits was formed to replace the Ancylus Lake. The recent, post-Littorina stage (PS, the last 4 cal ka) of the Baltic Sea evolution began in the Late Holocene.

Keywords

Atlantic Meridional Overturn Circulation Last Glacial Maximum Atlantic Water Younger Dryas Danish Strait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Blazhchishin, Paleogeography and Evolution of Late Quaternary Sedimentation in the Baltic Sea (Yantarnyi Skaz, Kaliningrad, 1998) [in Russian].Google Scholar
  2. 2.
    A. G. Grigor’ev, V. A. Zhamoida, M. A. Spiridonov, et al., “New data on evolution of southeastern part of the Baltic Sea for Later Glaciation period until present,” Reg. Geol. Metallog., No. 40, 103–114 (2009).Google Scholar
  3. 3.
    V. K. Gudelis and E. M. Emelyanov, Geology of the Baltic Sea (Moklas, Vilnius, 1976) [in Russian].Google Scholar
  4. 4.
    E. M. Emelyanov, “Power of littoral silts and near-bottom long-period currents in depression of the Baltic Sea below halocline,” in Complex Studies of the Processes, Characteristics, and Resources of the Russian Seas of the North European Basin (Apatity, 2007), No. 2, pp. 381–398.Google Scholar
  5. 5.
    E. M. Emelyanov, “Deglaciation of Northern Europe and its reflection in marine sediments,” in Proceedings of the XX International Scientific Conference (School) on Marine Geology “Geology of the Seas and Oceans” (GEOS, Moscow, 2013), Vol. 1, pp. 205–207.Google Scholar
  6. 6.
    N. O. Chistyakova, E. V. Ivanova, B. Risebrobakken, E. A. Ovsepyan, and Y. S. Ovsepyan, “Reconstruction of the postglacial environments in the southwestern Barents Sea based on foraminiferal assemblages,” Oceanology (Engl. Transl.) 50 (4), 573–581 (2010).Google Scholar
  7. 7.
    T. Andrén, “Baltiska Issjön–eller hur det började,” Havsutsikt 1, 4–5 (2003).Google Scholar
  8. 8.
    T. Andrén, “Yoldiahavet–en viktig parentes,” Havsutsikt 2, 6–7 (2003).Google Scholar
  9. 9.
    T. Andrén, “Ancylussjön–fortfarande ett mysterium,” Havsutsikt 3, 8–9 (2003).Google Scholar
  10. 10.
    T. Andrén, S. Björck, E. Andrén, et al., “The Development of the Baltic Sea Basin during the Last 130 ka,” in The Baltic Sea Basin, Ed. by J. Harff, et al., (Springer- Verlag, Berlin, 2011), pp. 75–98.CrossRefGoogle Scholar
  11. 11.
    O. Bennike and J. B. Jensen, “A Baltic Ice Lake lowstand of latest Allerød age in the Arkona basin, southern Baltic Sea,” Geol. Surv. Den. Greenl. Bull. 28, 17–20 (2013).Google Scholar
  12. 12.
    H. A. Bauch, H. Erlenkeuser, R. F. Spielhagen, et al., “A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30 000 yr,” Quat. Sci. Rev. 20 (4), 659–678 (2001).CrossRefGoogle Scholar
  13. 13.
    S. Björck, “A review of the history of the Baltic Sea, 13.0–8.0 ka BP,” Quat. Int. 27, 19–40 (1995).CrossRefGoogle Scholar
  14. 14.
    S. Björck, “The late Quaternary development of the Baltic Sea basin,” in Assessment of Climate Change for the Baltic Sea Basin (Springer-Verlag, Berlin, 2008), pp. 398–407.Google Scholar
  15. 15.
    E. Calvo, J. Grimalt, and E. Jansen, “High resolution UK 37 sea surface temperature reconstruction in the Norwegian Sea during the Holocene,” Quat. Sci. Rev. 21, 1385–1394 (2002).CrossRefGoogle Scholar
  16. 16.
    L. B. Clemmensen, A. S. Murray, and L. Nielsen, “Quantitative constraints on the sea-level fall that terminated the Littorina Sea Srage, southern Scandinavia,” Quat. Sci. Rev., No. 40, 54–63 (2012).CrossRefGoogle Scholar
  17. 17.
    J. C. Duplessy, E. V. Ivanova, I. O. Murdmaa, et al., “Holocene paleoceanography of the Northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean,” Boreas 30 (1), 2–16 (2001).CrossRefGoogle Scholar
  18. 18.
    A. Elverhoi, J. A. Dowdeswell, S. Funder, et al., “Glacial and oceanic history of the Polar North Atlantic margins: an overview,” Quat. Sci. Rev. 17 (1–3), 1–10 (1998).CrossRefGoogle Scholar
  19. 19.
    E. M. Emelyanov and G. Vaikutiene, “Holocene environmental changes during transition Ancylus-Litorina stages in the Gdansk Basin, south-eastern Baltic Sea,” Baltica 26 (1), 71–82 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Harff, A. Frischbutter, R. Lampe, and M. Meyer, “Sea-level change in the Baltic Sea: interrelation of climatic and geological processes,” in Geological Perspectives of Global Climate Change, Ed. by L. C. Gerhard, et al., (Tulsa, OK, 2001), Vol. 12, pp. 231–250.Google Scholar
  21. 21.
    V. Gataullin, J. Mangerud, and J. I. Svendsen, “The extent of the Late Weichselian ice sheet in the southeastern Barents Sea,” Global Planet. Change 31, 453–474 (2001).CrossRefGoogle Scholar
  22. 22.
    R. Gyllencreutz, J. Backman, M. Jakobsson, et al., “Postglacial palaeoceanography in the Skagerrak,” The Holocene 16 (7), 975–985 (2006).CrossRefGoogle Scholar
  23. 23.
    K. A. Hughen, M. G. L. Baillie, E. Bard, et al., “Marine radiocarbon age calibration, 0–26 cal kyr BP,” Radiocarbon 46, 1059–1086 (2004).Google Scholar
  24. 24.
    E. V. Ivanova, The Global Thermohaline Paleocirculation (Springer-Verlag, New York, 2009).CrossRefGoogle Scholar
  25. 25.
    E. V. Ivanova, I. O. Murdmaa, J. C. Duplessy, and M. Paterne, “Late Weichselian to Holocene Paleoenvironments in the Barents Sea,” Global Planet. Change 34 (3–4), 69–78 (2002).Google Scholar
  26. 26.
    E. Ivanova, I. Murdmaa, A. de Vernal, et al., “Northern Barents Sea environment during the last deglaciation: response to changes in AMOC and sea-ice extent,” in 11th International Conference on Paleoceanography, Abstracts of Papers (Sitges-Barcelona, Spain, 2013), p. 76.Google Scholar
  27. 27.
    V. Kalm, “Ice-flow pattern and extent of the last Scandinavian ice sheet southeast of the Baltic Sea,” Quat. Sci. Rev. 44, 51–59 (2012).CrossRefGoogle Scholar
  28. 28.
    D. Klitgaard-Kristensen, T. L. Rasmussen, and N. Koç, “Palaeoceanographic changes in the northern Barents Sea during the last 16 000 years–new constraints on the last deglaciation of the Svalbard–Barents Sea Ice Sheet,” Boreas 42, 798–813 (2013).CrossRefGoogle Scholar
  29. 29.
    K. Lambeck, C. Smither, and P. Johnston, “Sea-level change, glacial rebound and mantle viscosity for northern Europe,” Geophys. J. Int. 134, 102–144 (1998).CrossRefGoogle Scholar
  30. 30.
    J. Y. Landvik, S. Bondebik, A. Elyerhoi, et al., “The last glacial maximum of Svalbard and the Barents Sea area: Ice Sheet extent and configuration,” Quat. Sci. Rev. 17 (1–3), 43–76 (1998).CrossRefGoogle Scholar
  31. 31.
    H. Loeng, “Features of the physical oceanographic conditions of the Barents Sea,” Polar Res. 10 (1), 5–18 (1991).CrossRefGoogle Scholar
  32. 32.
    D. J. Lubinski, L. Polyak, and S. L. Forman, “Freshwater and Atlantic water inflows to the deep northern Barents and Kara seas since ca 13–14C ka: foraminifera and stable isotopes,” Quat. Sci. Rev. 20, 1851–1879 (2001).CrossRefGoogle Scholar
  33. 33.
    J. Mangerud, M. Jakobsson, H. Alexanderson, et al., “Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation,” Quat. Sci. Rev. 23, 1313–1332 (2004).CrossRefGoogle Scholar
  34. 34.
    J. Mangerud, S. Bondevik, S. Gulliksen, et al., “Marine 14C reservoir ages for 19th century whales and mollusks from the North Atlantic,” Quat. Sci. Rev. 25, 3228–3245 (2006). doi: 10.1016/j.quascirev.2006.03.010CrossRefGoogle Scholar
  35. 35.
    L. Marks, “Pleistocene glacial limits in the territory of Poland,” Przeglad Geol. 53 (10/2), 988–993 (2005).Google Scholar
  36. 36.
    W. Matthäus, “Natural variability and human impacts reflected in long-term changes in the Baltic Deep water conditions–a brief review,” Dtsch. Hydrogr. Z. 47, 47–65 (1995).CrossRefGoogle Scholar
  37. 37.
    J. F. McManus, R. Francois, J.-M. Gherardi, et al., “Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes,” Nature 428, 834–837 (2004).CrossRefGoogle Scholar
  38. 38.
    J. Müller and R. Stein, “High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice–ocean interactions during abrupt climate shifts,” Earth Planet. Sci. Lett. 403, 446–455 (2014).CrossRefGoogle Scholar
  39. 39.
    I. O. Murdmaa, E. V. Ivanova, J. C. Duplessy, et al., “Facies system of the Central and Eastern Barents Sea since the Last Glaciation to recent,” Mar. Geol. 230 (3–4), 273–303 (2006).Google Scholar
  40. 40.
    North Greenland Ice Core Project members, “Highresolution record of Northern Hemisphere climate extending into the last interglacial period,” Nature 431, 147–151 (2004).CrossRefGoogle Scholar
  41. 41.
    D. Ottesen, J. A. Dowdeswell, and L. Rise, “Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet: the 2500-km-long Norwegian-Svalbard margin (57°–80° N),” GSA Bull. 117 (7/8), 1033–1050 (2005). doi: 10.1130/B25577.1.CrossRefGoogle Scholar
  42. 42.
    D. Ottesen, C. R. Stokes, L. Risea, and L. Olsen, “Ice sheet dynamics and ice streaming along the coastal parts of northern Norway,” Quat. Sci. Rev. 27, 922–940 (2008).CrossRefGoogle Scholar
  43. 43.
    Yu. Pavlidis and E. I. Polyakova, “Late Pleistocene and Holocene depositional environments and paleoceanography of the Barents Sea: evidence from seismic and biostratigraphic data,” Mar. Geol. 143, 189–205 (1997).CrossRefGoogle Scholar
  44. 44.
    T. L. Rasmussen, E. Thomsen, M. A. Slubowska, et al., “Paleoceanographic evolution of the SW Svalbard margin (76° N) since 20 000 14C yr BP,” Quat. Res. 67, 100–114 (2007).CrossRefGoogle Scholar
  45. 45.
    T. L. Rasmussen, E. Thomsen, K. Skirbekk, et al., “Spatial and temporal distribution of Holocene temperature maxima in the northern Nordic seas: interplay of Atlantic-, Arctic- and polar water masses,” Quat. Sci. Rev. 92, 280–281 (2014).CrossRefGoogle Scholar
  46. 46.
    T. L. Rasmussen and E. Thomsen, “Palaeoceanographic development in Storfjorden, Svalbard, during the deglaciation and Holocene: evidence from benthic foraminiferal records,” Boreas 44, 24–44 (2015).CrossRefGoogle Scholar
  47. 47.
    P. J. Reimer, M. G. L. Baillie, E. Bard, et al., “IntCal09 and Marine09 Radiocarbon Age calibration curves, 0–50,000 years cal BP,” Radiocarbon 51 (4), 1111–1150 (2009).Google Scholar
  48. 48.
    V. R. Rinterknecht, A. Bitinas, P. U. Clark, et al., “Timing of the last deglaciation in Lithuania,” Boreas 37, 426–433 (2008).CrossRefGoogle Scholar
  49. 49.
    B. Risebrobakken, E. Jansen, C. Andersson, et al., “A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas,” Paleoceanography 18 (1), 1017 (2003). doi: 10.1029/2002PA000764CrossRefGoogle Scholar
  50. 50.
    B. Risebrobakken, M. Moros, E. Ivanova, et al., “Climate and oceanographic variability in the SW Barents Sea during the Holocene,” Holocene 20 (4), 609–621 (2010). doi: 10.1177/0959683609356586CrossRefGoogle Scholar
  51. 51.
    B. Risebrobakken, T. Dokken, L. H. Smedsrud, et al., “Early Holocene temperature variability in the Nordic Seas: the role of oceanic heat advection versus changes in orbital forcing,” Paleoceanography 26, PA4206 (2011). doi: 10.1029/2011PA002117CrossRefGoogle Scholar
  52. 52.
    M. Sarnthein, J. P. Kennett, J. Chappel, et al., “Exploring Late Pleistocene climate variations,” Trans., Am. Geophys. Union. 81 (51), 625, 629–630 (2000).Google Scholar
  53. 53.
    M. Sarnthein, S. van Kreveld, H. Erlenkauser, et al., “Centennial to millennial scale periodicities of Holocene climate and sediment injections off the western Barents shelf,” Boreas 32 (75), 447–461 (2003). doi: 10.1080/03009480301813CrossRefGoogle Scholar
  54. 54.
    M. Sarnthein, U. Pflaumann, and M. Weinelt, “Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates,” Paleoceanography 18 (2), 1047 (2003). doi: 10.1029/2002pa000771Google Scholar
  55. 55.
    M. J. Siegert and J. A. Dowdeswell, “Late Weichselian iceberg, surface-melt and sediment production from the Eurasian Ice Sheet: results from numerical icesheet modeling,” Mar. Geol. 188, 109–127 (2002).CrossRefGoogle Scholar
  56. 56.
    M. A. Slubowska, N. Koç, T. L. Rasmussen, and D. Klitgaard-Kristensen, “Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80° N,” Paleoceanography 20, PA4014 (2005).CrossRefGoogle Scholar
  57. 57.
    M. Slubowska-Woldengen, T. L. Rasmussen, N. Koç, et al., “Advection of Atlantic water to the western and northern Svalbard shelf since 17 500 cal yr BP,” Quat. Sci. Rev. 26, 463–478 (2007).CrossRefGoogle Scholar
  58. 58.
    J. I. Svendsen, H. Alexanderson, V. I. Astakhov, et al., “Late Quaternary ice sheet history of northern Eurasia,” Quat. Sci. Rev. 23, 1229–1271 (2004).CrossRefGoogle Scholar
  59. 59.
    M. Tikkanen and J. Oksanen, “Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland,” Fennia 180, 9–20 (2002).Google Scholar
  60. 60.
    S. Uscinowicz, “Relative sea level changes, glacio-isostatic rebound and shoreline displacement in the Southern Baltic,” Pol. Geol. Inst. Spec. Pap. 10, 1–80 (2003).Google Scholar
  61. 61.
    C. Waelbroeck, L. Labeyrie, E. Michel, et al., “Sealevel and deep water temperature changes derived from benthic foraminifera isotopic records,” Quat. Sci. Rev. 21, 295–305 (2002).CrossRefGoogle Scholar
  62. 62.
    W. Wysota, P. Molewski, and R. J. Sokoowski, “Record of the Vistula ice lobe advances in the Late Weichselian glacial sequence in north-central Poland,” Quat. Int. 207, 26–41 (2009).CrossRefGoogle Scholar
  63. 63.
    J. Zachowicz, G. Miotk-Szpiganowicz, R. Kramarska, et al., “A critical review and reinterpretation of bio-, litho- and seismostratigraphic data of the Southern Baltic deposits,” Pol. Geol. Inst. Spec. Pap. 23, 117–138 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • E. V. Ivanova
    • 1
    Email author
  • I. O. Murdmaa
    • 1
  • E. M. Emelyanov
    • 2
  • E. A. Seitkalieva
    • 1
    • 3
  • E. P. Radionova
    • 4
  • G. N. Alekhina
    • 1
  • S. M. Sloistov
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Atlantic Department, Institute of OceanologyRussian Academy of SciencesKaliningradRussia
  3. 3.Department of GeologyMoscow State UniversityMoscowRussia
  4. 4.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations