, Volume 55, Issue 5, pp 667–678 | Cite as

Assimilation of satellite surface-height anomalies data into a Hybrid Coordinate Ocean Model (HYCOM) over the Atlantic Ocean

  • C. A. S. TanajuraEmail author
  • L. N. Lima
  • K. P. Belyaev
Marine Physics


The data of sea height anomalies calculated along the tracks of the Jason-1 and Jason-2 satellites are assimilated into the HYCOM hydrodynamic ocean model developed at the University of Miami, USA. We used a known method of data assimilation, the so-called ensemble method of the optimal interpolation scheme (EnOI). In this work, we study the influence of the assimilation of sea height anomalies on other variables of the model. The behavior of the time series of the analyzed and predicted values of the model is compared with a reference calculation (free run), i.e., with the behavior of model variables without assimilation but under the same initial and boundary conditions. The results of the simulation are also compared with the independent data of observations on moorings of the Pilot Research Array in the Tropical Atlantic (PIRATA) and the data of the ARGO floats using objective metrics. The investigations demonstrate that data assimilation under specific conditions results in a significant improvement of the 24-h prediction of the ocean state. The experiments also show that the assimilated fields of the ocean level contain a clearly pronounced mesoscale variability; thus they quantitatively differ from the dynamics obtained in the reference experiment.


Assimilation Data Assimilation Ocean Level Reference Experiment Error Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Agoshkov and V. M. Ipatova, “Solvability of the observation data assimilation problem in the threedimensional model of ocean dynamics,” Differ. Equations 43 (8), 1088–1100 (2007).CrossRefGoogle Scholar
  2. 2.
    V. I. Agoshkov, V. B. Zalesnyi, E. I. Parmuzin, V. P. Shutyaev, and V. M. Ipatova, “Problems of variational assimilation of observational data for ocean general circulation models and methods for their solution,” Izv. Atmos. Ocean. Phys. 46 (6), 677–712 (2010).CrossRefGoogle Scholar
  3. 3.
    K. P. Belyaev, C. A. S. Tanajura, and N. P. Tuchkova, “Comparison of methods for Argo drifters data assimilation into a hydrodynamic model of the ocean,” Oceanology (Engl. Transl.) 52 (5), 593–603 (2012).Google Scholar
  4. 4.
    N. A. Dianskii, Modeling of the Ocean Water Circulation and Analysis of Its Reaction on the Shortand LongPeriod Atmospheric Effects (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  5. 5.
    L. S. Gandin, Objective Analysis of Hydrometeorological Fields (Gidrometeoizdat, Leningrad, 1974) [in Russian].Google Scholar
  6. 6.
    S. Akella and I. M. Navon, “Different approaches to model error formulation in 4D Var: a study with high resolution advection schemes,” Tellus 61, 1039–1050 (2009).CrossRefGoogle Scholar
  7. 7.
    L. Bengtsson, “On the use of a time sequence of surface pressures in four-dimensional data assimilation,” Tellus 32, 189–197 (1980).CrossRefGoogle Scholar
  8. 8.
    L. Bertino and K. A. Lisæter, “The TOPAZ monitoring and prediction system for the Atlantic and Arctic oceans,” Operat. Oceanogr. 1, 15–19 (2008).Google Scholar
  9. 9.
    R. Bleck, “An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates,” Ocean Model. 4, 55–88 (2002).CrossRefGoogle Scholar
  10. 10.
    R. Bleck and D. B. Boudra, “Initial testing of a numerical ocean circulation model using a hybrid quasi isopycnal vertical coordinate,” J. Phys. Oceanogr. 11, 755–770 (1981).CrossRefGoogle Scholar
  11. 11.
    R. Bleck and S. G. Benjamin, “Regional weather prediction with a model combining terrain-following and isentropic coordinates. Part I: Model description,” Mon. Weather Rev. 121, 1770–1785 (1993).CrossRefGoogle Scholar
  12. 12.
    E. P. Chassignet, H. E. Hurlburt, E. J. Metzger, et al., “US GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM),” Oceanography 22, 64–75 (2009).CrossRefGoogle Scholar
  13. 13.
    G. Chepurin, J. Carton, and D. Dee, “Forecast model bias correction in Ocean Data assimilation,” Mon. Weather Rev. 133, 1328–1344 (2005).CrossRefGoogle Scholar
  14. 14.
    S. E. Cohn, “An introduction to estimation theory,” J. Meteorol. Soc. Jpn. 75, 257–288 (1997).Google Scholar
  15. 15.
    F. Counillon and L. Bertino, “High-resolution ensemble forecasting for the Gulf of Mexico eddies and fronts,” Ocean Dyn. 59, 83–95 (2009).CrossRefGoogle Scholar
  16. 16.
    J. A. Cummings, “Operational multivariate ocean data assimilation,” Q. J. R. Meteorol. Soc. 131, 3583–3604 (2005).CrossRefGoogle Scholar
  17. 17.
    R. Daley, Atmospheric Data Analysis (Cambridge University Press, Cambridge, 1991).Google Scholar
  18. 18.
    G. Evensen, “The ensemble Kalman filter: theoretical formulation and practical implementation,” Ocean Dyn. 53, 343–367 (2003).CrossRefGoogle Scholar
  19. 19.
    T. Ezer and G. Mellor, “Data assimilation experiments in the Gulf Stream region: How useful are satellitederived surface data for now casting the subsurface fields?” J. Atmos. Oceanogr. 14, 1379–1391 (1997).CrossRefGoogle Scholar
  20. 20.
    M. Ghill and P. Malanotte-Rizzoli, “Data assimilation in meteorology and oceanography,” Adv. Geophys. 33, 141–266 (1991).CrossRefGoogle Scholar
  21. 21.
    R. Kalman, “A new approach to linear filtering and prediction problem,” J. Basic Eng. 82, 35–45 (1960).CrossRefGoogle Scholar
  22. 22.
    E. Kalnay, Atmospheric Modeling, Data Assimilation, and Predictability (Cambridge University Press, Cambridge, 2002).CrossRefGoogle Scholar
  23. 23.
    P. Oke, G. B. Brassington, D. A. Griffin, and A. Schiller, “The blue link ocean data assimilation system,” Ocean Model. 21, 46–70 (2008).CrossRefGoogle Scholar
  24. 24.
    M. Rio and R. Hernandez, “A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model,” J. Geophys. Res. 109, 1022–1039 (2004).CrossRefGoogle Scholar
  25. 25.
    A. Schiller and G. Brassington, Operational Oceanography in the 21st Century, (Springer-Verlag, New York, 2005).Google Scholar
  26. 26.
    C. Stephen, J. I. Antonov, T. P. Boye, et al., World Ocean Atlas, Ed. by S. Levitus, NOAA Atlas NESDIS 49, (U.S. Government Printing Office, Washington D.C., 2001).Google Scholar
  27. 27.
    N. Smith, “Perspectives from the Global Ocean Data Assimilation Experiment,” in Ocean Weather Forecasting, Ed. by E. Chassignet and J. Verron (SpringerVerlag, New York, 2006), pp. 1–17.CrossRefGoogle Scholar
  28. 28.
    O. Talagrand and P. Courtier, “Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory,” Q. J. R. Meteorol. Soc. 113, 1311–1328 (1987).CrossRefGoogle Scholar
  29. 29.
    C. A. S. Tanajura and K. Belyaev, “On oceanic impact of data assimilation method in a coupled ocean-landatmosphere model over Atlantic,” Ocean Dyn. 52 (3), 23–32 (2002).CrossRefGoogle Scholar
  30. 30.
    C. A. S. Tanajura and K. Belyaev, “A sequential data assimilation method based on the properties of diffusion-type process,” Appl. Math. Model. 33, 2165–2174 (2009).CrossRefGoogle Scholar
  31. 31.
    W. C. Thacker and O. Esenkov, “Assimilating XBT data into HYCOM,” J. Atmos. Ocean. Tech. 19, 709–724 (2002).CrossRefGoogle Scholar
  32. 32.
    J. Xie, F. Counillon, J. Zhu, and L. Bertino, “An eddyresolving tidal-driven model in China South Sea assimilation along track satellite data using EnOI,” Ocean Sci. 7, 609–627 (2011).CrossRefGoogle Scholar
  33. 33.
    A. T. Weaver, J. Vialard, and D. L. T. Anderson, “Threeand four-dimensional variational assimilation with the general circulation models of the tropical Pacific Ocean. Part I: formulation, internal diagnostics and consistency checks,” Mon. Weather Rev. 131, 1360–1378 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • C. A. S. Tanajura
    • 1
    • 2
    • 3
    Email author
  • L. N. Lima
    • 2
  • K. P. Belyaev
    • 2
    • 4
  1. 1.Institute of PhysicsFederal University of BahiaBahiaBrazil
  2. 2.Scientific Research Center for Geophysics and GeologyFederal University of BahiaBahiaBrazil
  3. 3.Ocean Research DepartmentCalifornia UniversitySanta CruzUSA
  4. 4.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations