, Volume 55, Issue 3, pp 390–399 | Cite as

Manifestation of carbonate-barite mineralization around methane seeps in the Sea of Okhotsk (the western slope of the Kuril Basin)

  • A. N. Derkachev
  • N. A. Nikolaeva
  • B. V. Baranov
  • N. N. Barinov
  • A. V. Mozherovskiy
  • H. Minami
  • A. Hachikubo
  • H. Shoji
Marine Geology


First data are reported on a new manifestation of carbonate-barite mineralization found at a site of methane emanations on the western slope of the Kuril Basin, Sea of Okhotsk. Morphological types of barite, aragonite, and low-magnesian calcite are considered in detail; the results of carbon and oxygen isotope study of carbonate concretions and crusts are presented. It is shown that the barite was formed in sediments owing to the diffusion infiltration of the barium-rich fluids through sedimentary succession. The component and isotope compositions of gases are determined and the relatively elevated content of heavy hydrocarbons is revealed. It was assumed that the relatively heavy isotope composition of carbonates is caused by the influence of fluid released from deep sedimentary horizons owing to the dehydration of clay minerals during post- sedimentation transformations. Obtained data show that the origin of carbonate-barite mineralization is related to the migration of hydrocarbons (mainly methane) and barium-bearing cold gas-fluid flows, which were derived not only from near-surface reservoirs but also from deeper-seated sources.


Aragonite Barite Sedimentary Succession Authigenic Carbonate Cold Seep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. V. Astakhova, M. I. Lipkina, and Yu. I. Mel’nichenko, “Hydrothermal barium mineralization in the Derugin Depression, Sea of Okhotsk,” Dokl. Akad. Nauk SSSR 295, 212–215 (1987).Google Scholar
  2. 2.
    G. G. Afonina, V. M. Makagon, and B. M. Shmakin, Barium- and Rubidium-Containing Potassium Feldspar (Nauka, Novosibirsk, 1978) [in Russian].Google Scholar
  3. 3.
    G. D. Ginsburg and V. A. Solov’ev, Submarine Gas Hydrates (All-Russia Scientific Research Institute for Geology and Mineral Resources of the Ocean, St. Petersburg, 1994) [in Russian].Google Scholar
  4. 4.
    M. P. Glebov, V. M. Novikov, and B. M. Shmakin, “Strontium and barium in plagioclase muscovite pegmatites in Eastern Siberia,” in Strontium and Barium in Endogenic Formations (Nauka, Moscow, 1973), pp. 142–151.Google Scholar
  5. 5.
    A. N. Derkachev, G. Borman, I. Grainert, and A. V. Mozherovskiy, “Authigenic carbonate and barite mineralization in sediments of the Derugin Depression (Sea of Okhotsk),” Litol. Polezn. Iskop., No. 6, 568–585 (2000).Google Scholar
  6. 6.
    A. N. Derkachev and N. A. Nikolaeva, “Peculiarities of authigenic mineralization in sediments of the Sea of Okhotsk,” in Far Eastern Seas of Russia, Book 3: Geological and Geophysical Studies, Ed. by V. A. Akulichev (Nauka, Moscow, 2007), pp. 223–239.Google Scholar
  7. 7.
    A. Yu. Lein and M. V. Ivanov, Biogeochemical Cycle of Methane in an Ocean (Nauka, Moscow, 2009) [in Russian].Google Scholar
  8. 8.
    A. I. Obzhirov, A. N. Derkachev, B. V. Baranov, et al., “Anomalies of methane and associated barites in the Derugin Depression, Sea of Okhotsk,” Podvod. Tekhnol. Mir. Okeana, No. 2, 32–44 (2006).Google Scholar
  9. 9.
    P. Aharon and B. Fu, “Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico,” Geochim. Cosmochim. Acta 64(2), 233–246 (2000).CrossRefGoogle Scholar
  10. 10.
    G. Aloisi, C. Pierre, J. Rouchy, et al., “MEDINAUT Scientific Party. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization,” Earth Planet. Sci. Lett. 184, 321–338 (2000).CrossRefGoogle Scholar
  11. 11.
    G. Aloisi, K. Wallmann, S. M. Bollwerk, et al., “The effect of dissolved barium on biogeochemical processes at cold seeps,” Geochim. Cosmochim. Acta 68(8), 1735–1748 (2004).CrossRefGoogle Scholar
  12. 12.
    S. Bollwerk, Rezente Submarine Barytbildung im Derugin Becken (Ochotskisches Meer): Geochemische Prozesse an Activen Fluidaustrittsstellen (GEOMAR, Kiel, 2002).Google Scholar
  13. 13.
    E. A. Burton, “Controls on marine carbonate cement mineralogy: review and reassessment,” Chem. Geol. 105, 163–179 (1993).CrossRefGoogle Scholar
  14. 14.
    C. Canet, P. Anadon, P. Alfonso, et al., “Gas-seep related carbonate and barite authigenic mineralization in the northern Gulf of California,” Mar. Pet. Geol. 43, 147–165 (2013).CrossRefGoogle Scholar
  15. 15.
    D. G. Castellini, G. Dickens, G. T. Snyder, and C. D. Ruppel, “Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico,” Chem. Geol. 226, 1–30 (2006).CrossRefGoogle Scholar
  16. 16.
    Cruise report: KOMEX V and VI, R/V Prof. Gagarinsky, cruise 26, H/V Marshal Gelovany, cruise 1,” in GEOMAR Report 88 (Kiel, 2000).Google Scholar
  17. 17.
    Cruise report: KOMEX, R/V Akademik M.A. Lavrentyev, cruise 29, Leg 1 and Leg 2,” in GEOMAR Report 110 (Kiel, 2003).Google Scholar
  18. 18.
    Cruise report: KOMEX, R/V Sonne, cruise 178,” in GEOMAR Report (Kiel, 2004).Google Scholar
  19. 19.
    A. Dahlmann and G. J. Lange, “Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160,” Earth Planet. Sci. Lett. 212, 377–391 (2003).CrossRefGoogle Scholar
  20. 20.
    A. N. Dia, L. Aquiliana, J. Bouleque, et al., “Origin of fluid sand related barite deposits at vent sites along the Peru convergent margin,” Geology 21, 1099–1102 (1993).CrossRefGoogle Scholar
  21. 21.
    J. Dymond, E. Suess, and M. Lyle, “Barium in deepsea sediment: a geochemical proxy for paleoproductivity,” Paleoceanography 7(2), 163–181 (1992).CrossRefGoogle Scholar
  22. 22.
    D. Feng and H. H. Roberts, “Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope,” Earth Planet. Sci. Lett. 309, 89–99 (2011).Google Scholar
  23. 23.
    B. Fu, P. Aharon, G. R. Byerly, and H. H. Roberts, “Barite chimneys on the Gulf of Mexico slope. Initial report on their petrography and geochemistry,” GeoMar. Lett. 14, 81–87 (1994).Google Scholar
  24. 24.
    J. Greinert, G. Bohrmann, and E. Suess, “Gas hydrateassociated carbonates and methane-venting at hydrate ridge: classification, distribution, and origin of authigenic lithologies,” in Natural Gas Hydrates: Occurrence, Distribution and Detection, Geophysical Monograph (American Geophysical Union, Washington, 2001), Vol. 124, pp. 99–113.Google Scholar
  25. 25.
    J. Greinert, S. Bollwerk, A. N. Derkachev, et al., “Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites,” Earth Planet. Lett. 203(1), 165–180 (2002).CrossRefGoogle Scholar
  26. 26.
    A. Hachikubo, A. Krylov, H. Sakagami, et al., “Isotopic composition of gas hydrates in subsurface sediments from offshore Sakhalin Island, Sea of Okhotsk,” Geo-Mar. Lett. 30, 13–319 (2010).Google Scholar
  27. 27.
    X. Han, E. Suess, H. Sahling, and K. Wallmann, “Fluid venting activity on the Costa Rica margin: new results from authigenic carbonates,” Int. J. Earth Sci. 93, 596–611 (2004).Google Scholar
  28. 28.
    J. R. Hein, W. R. Normark, B. R. McIntyre, et al., “Methanogenic calcite, 13C-depleted bivalve shells and gas hydrate from a mud volcano offshore southern California,” Geol. Soc. Am. 34, 108–112 (2006).Google Scholar
  29. 29.
    A. Judd and M. Hovland, Seabed Flow: The Impact of Geology, Biology, and the Marine environment (Cambridge University Press, Cambridge, 2007).CrossRefGoogle Scholar
  30. 30.
    A. S. Mansour and R. Sassen, “Mineralogical and stable isotopic characterization of authigenic carbonate from a hydrocarbon seep site, Gulf of Mexico slope: possible relation to crude oil degradation,” Mar. Geol. 281, 59–69 (2011).CrossRefGoogle Scholar
  31. 31.
    E. L. McQuay, M. E. Torres, R. W. Collier, et al., “Contribution of cold seep barite to the barium geochemical budget of a marginal basin,” Deep-Sea Res., Part I 55, 801–811 (2008).CrossRefGoogle Scholar
  32. 32.
    A. V. Milkov, “Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological setting,” Org. Geochem. 36, 681–702 (2005).CrossRefGoogle Scholar
  33. 33.
    Y. Mizutani and T. A. Rafter, “Isotopic behavior of sulfate oxygen in the bacterial reduction of sulfate,” Geochem. J. 6, 183–191 (1973).CrossRefGoogle Scholar
  34. 34.
    T. H. Naehr, P. Eichhubl, V. J. Orphan, et al., “Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study,” Deep-Sea Res., Part II 54, 1268–1291 (2007).CrossRefGoogle Scholar
  35. 35.
    T. H. Naehr, D. S. Stakes, and W. S. Moore, “Mass wasting, ephemeral fluid flow, and barite deposition on the California continental margin,” Geology 28(4), 315–319 (2000).CrossRefGoogle Scholar
  36. 36.
    Operation Report of Sakhalin Slope Gas Hydrate Project 2011, R/V Akademik M. A. Lavrentyev, Cruise 56, Ed. by H. Shoji, et al. (Kitami Institute of Technology, Kitami, Japan, 2012).Google Scholar
  37. 37.
    Operation Report of Sakhalin Slope Gas Hydrate Project II, 2013, R/V Akademik M.A. Lavrentyev, Cruise 62 (Kitami Institute of Technology, Kitami, Japan, 2014).Google Scholar
  38. 38.
    C. Pierre and Y. Fouquet, “Authigenic carbonates from methane seeps of the Congo deep-sea fan,” Geo-Mar. Lett. 27, 249–257 (2007).CrossRefGoogle Scholar
  39. 39.
    H. Roberts, “Fluid and gas expulsion on the Northern Gulf of Mexico continental slope: mud-prone to mineral-prone responses,” in Natural Gas Hydrates: Occurrence, Distribution, and Detection, Geophysical Monograph (American Geophysical Union, Washington, 2001), Vol. 124, pp. 145–161.Google Scholar
  40. 40.
    E. Suess, G. Bohrmann, R. Von Huene, et al., “Fluid venting in the eastern Aleutian subduction zone,” J. Geophys. Res., B 103(2), 2597–2614 (1998).CrossRefGoogle Scholar
  41. 41.
    M. Torres, J. McManus, and C. A. Huh, “Impact of fluid seepage along the San Clemente fault scarp on geochemical barium cycles on basin-wide scale,” Earth Planet. Sci. Lett. 203, 181–194 (2002).CrossRefGoogle Scholar
  42. 42.
    M. E. Torres, G. Bohrmann, E. Dube, and G. Poole, “Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins,” Geology 31(10), 897–900 (2003).CrossRefGoogle Scholar
  43. 43.
    M. E. Torres, G. Bohrmann, and E. Suess, “Authigenic barites and fluxes of barium associated with fluid seeps in the Peru subduction zone,” Earth Planet. Sci. Lett. 144, 469–481 (1996).CrossRefGoogle Scholar
  44. 44.
    H. Vanneste, R. H. James, B. A. Kelly-Gerreyn, and R. A. Mills, “Authigenic barite records of methane seepage at the Carlos Ribeiro mud volcano (Gulf of Cadiz),” Chem. Geol. 354, 42–54 (2013).CrossRefGoogle Scholar
  45. 45.
    M. T. Von Breymann, H. J. Brumsack, and K.-C. Emeis, “Deposition and diagenetic behavior of barium in the Japan Sea,” in Proceedings of the Ocean Drilling Program Scientific Results (College Station, TX, 1992), pp. 651–665.Google Scholar
  46. 46.
    M. J. Whiticar, “Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane,” Chem. Geol. 161, 291–314 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. N. Derkachev
    • 1
  • N. A. Nikolaeva
    • 1
  • B. V. Baranov
    • 2
  • N. N. Barinov
    • 3
  • A. V. Mozherovskiy
    • 1
  • H. Minami
    • 4
  • A. Hachikubo
    • 4
  • H. Shoji
    • 4
  1. 1.Il’ichev Pacific Oceanology Institute, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.Far East Geological Institute, Far East BranchRussian Academy of SciencesVladivostokRussia
  4. 4.Kitami Institute of TechnologyKitami, HokkaidoJapan

Personalised recommendations