, Volume 54, Issue 6, pp 798–807 | Cite as

Migrations of the North Atlantic Polar front during the last 300 ka: Evidence from planktic foraminiferal data

  • L. D. BashirovaEmail author
  • E. S. Kandiano
  • V. V. Sivkov
  • H. A. Bauch
Marine Geology


The main migrations of the Polar front (PF) during the last 300 ka were identified using planktic foraminiferal census data and derived from them sea surface paleotemperature (SST) estimates in two synchronized AMK-4438 and M23414 cores recovered directly beneath the main stream of the North Atlantic Current (NAC) south of Iceland. During the summer seasons, the cold waters adjacent to the PF did not reach the studied sites. These waters occurred here only during the winter seasons of MIS 2, 6, and 8. The northern part of the study area was influenced by the arctic waters more often than its southern part. During MIS 8 and 6 isotherms in the North Atlantic had mainly the subzonal orientation, while during MIS 2–4 they had the submeridional orientation. During the interglacials, the PF was located northward and westward from the study area. During MIS 7, the front was presumably situated closer to the study area in comparison with its modern position, and the isotherms were oriented mainly subzonal. For the MIS 5e period, we observed the most distant retreat of PF from the investigated area in the western and northwestern direction in relation to the anomalous deflection of the NAC to the north-west (intensification of the Irminger current) and the predominance of the submeridional orientation of the isotherms in the study area. During MIS 1, as well as MIS 7, the isotherms in the study area had mainly the subzonal orientation.


Polar Front Marine Isotope Stage North Atlantic Current Modern Analog Technique M23414 Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. I. Baranov, “Average month position of hydrological fronts in Northern Atlantic,” Okeanologiya (Moscow) 12(2), 217–224 (1972).Google Scholar
  2. 2.
    M. S. Barash, Quaternary Paleooceanology of Atlantic Ocean (Nauka, Moscow, 1988) [in Russian].Google Scholar
  3. 3.
    M. S. Barash, I. G. Yushina, and R. F. Spielhagen, “Reconstructions of the Quaternary paleohydrological variability by planktonic foraminifers (North Atlantic, Reykjanes Ridge),” Oceanology (Engl. Transl.) 42(5), 711–722 (2002).Google Scholar
  4. 4.
    O. B. Dmitrenko, V. V. Sivkov, and V. Yu. Rusakov, “Late quaternary migrations of the subarctic front in the North Atlantic (based on lithology and nannofossils),” Oceanology (Engl. Transl.) 49(2), 242–256 (2009).Google Scholar
  5. 5.
    V. Yu. Kuznetsov, G. A. Cherkachev, A. Yu. Lein, et al., “Age of hydrothermal ores of Mid-Atlantic Ridge according to 230Th/U-determination,” Vestn. S.-Peterb. Univ., Ser. 7: Geol., Geogr., No. 2, 91–99 (2007).Google Scholar
  6. 6.
    V. Yu. Kuznetsov, Radiochronology of Quaternary Sediments (Komil’fo, St. Petersburg, 2008) [in Russian].Google Scholar
  7. 7.
    N. P. Lukashina, “Water masses of the northern part of the Iceland basin in the late Pleistocene,” Oceanology (Engl. Transl.) 53(1), 99–109 (2013).Google Scholar
  8. 8.
    A Scientific report from 48th cruise of R/V Akademik Mstislav Keldysh: reports of Head of Expedition, Captain and Supervising Officers (IO RAS, Moscow, 2002), pp. 77–103.Google Scholar
  9. 9.
    V. B. Rodionov and A. G. Kostyanoi, Oceanic Fronts of the Seas of North European Basin (GEOS, Moscow, 1998) [in Russian].Google Scholar
  10. 10.
    V. N. Stepanov, Oceanosphere (Mysl’, Moscow, 1983) [in Russian].Google Scholar
  11. 11.
    J. Antonov, S. Levitus, T. P. Boyer, et al., World ocean atlas 1998: temperature of the Atlantic Ocean, in NOAA Atlas NESDIS 27 (D.C. Gov. Print. Off., Washington, 1998), Vol. 1.Google Scholar
  12. 12.
    E. Bard, M. Arnold, P. Maurice, et al., “Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry,” Nature 328, 791–794 (1987).CrossRefGoogle Scholar
  13. 13.
    H. A. Bauch, “Paleoceanography of the North Atlantic Ocean (68°-76° N) during the past 450 Ky deduced from planktic foraminiferal assemblages and stable isotopes,” in Contributions to the Micropaleontology and Paleoceanography of the Northern North Atlantic, Ed. by H. C. Hass et al. (Grzybowski Foundation, Krakow, 1997), pp. 83–100.Google Scholar
  14. 14.
    H. A. Bauch, H. Erlenkeuser, S. J. A. Jung, and J. Thiede, “Surface and deep water changes in the subpolar North Atlantic during termination II and the last interglaciation,” Paleoceanography 15, 76–84 (2000).CrossRefGoogle Scholar
  15. 15.
    H. A. Bauch and H. Erlenkeuser, “A ‘critical’ climatic evaluation of last interglacial (MIS 5e) records from the Norwegian Sea,” Polar Res. 27, 135–151 (2008).CrossRefGoogle Scholar
  16. 16.
    H. A. Bauch, E. S. Kandiano, J. Helmke, et al., “Climatic bisection of the last interglacial warm period in the Polar North Atlantic,” Quat. Sci. Rev. 30, 1813–1818 (2011).CrossRefGoogle Scholar
  17. 17.
    H. A. Bauch, E. S. Kandiano, and J. P. Helmke, “Contrasting ocean changes between the subpolar and polar North Atlantic during the past 135 ka,” Geophys. Res. Lett. 39(11604), 1–7 (2012).Google Scholar
  18. 18.
    W. S. Broecker, “The great ocean conveyor,” Oceanography 4, 79–89 (1991).CrossRefGoogle Scholar
  19. 19.
    M. R. Chapman and M. A. Maslin, “Low-latitude forcing of meridional temperature and salinity gradients in the subpolar North Atlantic and the growth of glacial ice sheets,” Geology 27, 875–878 (1999).CrossRefGoogle Scholar
  20. 20.
    R. L. Cifelli and R. K. Smith, “Distribution of planktonic foraminifera in the vicinity of the North Atlantic Current,” Smithson. Contrib. Paleobiol., No. 4, 1–52 (1970).Google Scholar
  21. 21.
    K. M. Cuffey and S. J. Marshall, “Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet,” Nature 404, 591–594 (2000).CrossRefGoogle Scholar
  22. 22.
    K. F. Darling, M. Kucera, D. Kroon, and C. M. Wade, “A resolution for the coiling direction paradox in Neogloboquadrina pachyderma,” Paleoceanography 21(PA2011), 1–14 (2006).Google Scholar
  23. 23.
    G. H. Denton and W. S. Broecker, “Wobbly ocean conveyor circulation during the Holocene? Quat. Sci. Rev. 27, 1939–1950 (2008).CrossRefGoogle Scholar
  24. 24.
    C. Didie, H. A. Bauch, and J. P. Helmke, “Late Quaternary deep-sea ostracodes in the polar and subpolar North Atlantic: paleoecological and paleoenvironmental implications,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 195–212 (2002).CrossRefGoogle Scholar
  25. 25.
    F. Eynaud, L. de Abreu, and A. Voelker, “Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka,” Geochem., Geophys., Geosyst. 10(7), 1–21 (2009).CrossRefGoogle Scholar
  26. 26.
    E. J. Farmer, M. R. Chapman, and J. E. Andrews, “Holocene temperature evolution of the subpolar North Atlantic recorded in the Mg/Ca ratios of surface and thermocline dwelling planktonic foraminifers,” Global Planet. Change 79, 234–243 (2011).CrossRefGoogle Scholar
  27. 27.
    A. Ganopolski and S. Rahmstorf, “Rapid changes of glacial climate simulated in a coupled climate model,” Nature 409, 153–158 (2001).CrossRefGoogle Scholar
  28. 28.
    J. P. Helmke and H. A. Bauch, “Glacial-interglacial relationship between carbonate components and sediment reflectance in the North Atlantic,” Geo-Mar. Lett. 21, 16–22 (2001).CrossRefGoogle Scholar
  29. 29.
    J. P. Helmke, M. Schulz, and H. A. Bauch, “Sedimentcolor record from the Northeast Atlantic reveals patterns of millennial-scale climate variability during the past 500000 years,” Quat. Res., No. 57, 49–57 (2002).Google Scholar
  30. 30.
    C. Hemleben, M. Spindler, and O. R. Anderson, Modern Planktonic Foraminifera (Springer-Verlag, New York, 1989).CrossRefGoogle Scholar
  31. 31.
    J. Imbrie and N. G. Kipp, “A new micropaleontological method for quantitative paleoclimatology: application to a Late Pleistocene Caribbean core,” in The Late Cenozoic Glacial Ages, Ed. by K. K. Turekian (Yale Univ. Press, New Haven, 1971), pp. 71–181.Google Scholar
  32. 32.
    T. Johannessen, E. Jansen, A. Flatoy, and A. C. Ravelo, “The relationship between surface water masses, oceanographic fronts and paleoclimatic proxies in surface sediments of the Greenland, Iceland, Norwegian seas,” in Carbon Cycling in the Glacial Ocean: Constrains of the Oceans’s Role in Global Change, Ed. by R. Zahn (Springer, Berlin, 1994), pp. 61–85.CrossRefGoogle Scholar
  33. 33.
    L. Jonkers, G.-J. A. Brummer, F. J. C. Peeters, et al., “Seasonal stratification, shell flux, and oxygen isotope dynamics of left-coiling N. pachyderma and T. quinqueloba in the western subpolar North Atlantic,” Paleoceanography 25(PA2204), 1–13 (2010).Google Scholar
  34. 34.
    S. J. A. Jung, “Wassermassenaustausch zwischen NE-Atlantik und Nordmeer während der letzten 300.000/80.000 Jahre im Abbild stabiler Ound C-Isotope,” in Berichte aus dem Sonderforschungsbereich 31 (Christian-Albrechts-Univ., Kiel, 1996), Vol. 61.Google Scholar
  35. 35.
    E. S. Kandiano and H. A. Bauch, “Implications of planktic foraminiferal size fractions for the glacialinterglacial paleoceanography of the polar north Atlantic,” J. Foraminiferal Res. 32(3), 245–251 (2002).CrossRefGoogle Scholar
  36. 36.
    E. S. Kandiano and H. A. Bauch, “Surface ocean temperatures in the north-east Atlantic during the last 500000 years: evidence from foraminiferal census data,” Terra Nova._500000 years: evidence from foraminiferal census data,” Terra Nova. 15, 265–271 (2003).CrossRefGoogle Scholar
  37. 37.
    E. S. Kandiano, H. A. Bauch, and A. Müller, “Sea surface temperature variability in the North Atlantic during the last two glacial-interglacial cycles: comparison of faunal, oxygen isotopic, and Mg/Ca-derived records,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 204, 145–164 (2004).CrossRefGoogle Scholar
  38. 38.
    K. E. Kohfeld, R. G. Fairbanks, S. L. Smith, and I. D. Walsh, Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar waters: evidence from Northeast Water Polynya plankton tows, sediment traps, and surface sediments,” Paleoceanography 11(6), 679–699 (1996).CrossRefGoogle Scholar
  39. 39.
    M. Kucera, A. Rosell-Melé, R. Schneider, et al., “Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO),” Quat. Sci. Rev. 24, 813–819 (2005).CrossRefGoogle Scholar
  40. 40.
    V. Yu. Kuznetsov, Kh. A. Arslanov, V. V. Shilov, et al., “230Th-excess and 14C dating of pelagic sediments from the hydrothermal zone of the North Atlantic,” Geochronometria. 21, 33–40 (2002).Google Scholar
  41. 41.
    H. H. Lamb, “Climatic variation and changes in the wind and ocean circulation: the Little Ice Age in the northeast Atlantic,” Quat. Res. 11, 1–20 (1979).CrossRefGoogle Scholar
  42. 42.
    S. Levitus and T. P. Boyer, World Ocean Atlas 1994: Temperature, NOAA Atlas NESDIS 4 (D.C. Gov. Printing Office, Washington, 1994), Vol. 4.Google Scholar
  43. 43.
    L. E. Lisiecki and M. E. Raymo, “A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records,” Paleoceanography 20(PA1003), 1–17 (2005).Google Scholar
  44. 44.
    J. J. Lowe, B. Ammann, H. H. Birks, et al., “Climatic changes in areas adjacent to the North Atlantic during the last glacial-interglacial transition (4–9 ka BP): a contribution to IGCP-253,” J. Quat. Sci. 9(2), 185–198 (1994).CrossRefGoogle Scholar
  45. 45.
    D. G. Martinson, N. G. Pisias, J. D. Hays, et al., “Age dating and the orbital theory of the ICE Ages: development of a high resolution 0 to 300,000 year chronostratigraphy,” Quat. Res. 27, 1–29 (1987).CrossRefGoogle Scholar
  46. 46.
    A. McIntyre, W. F. Ruddiman, and R. Jantzen, “Southward penetrations of the North Atlantic Polar Front: faunal and floral evidence of large-scale surface water mass movements over the last 225000 years,” Deep-Sea Res. 19, 61–77 (1972).Google Scholar
  47. 47.
    J. F. McManus, D. W. Oppo, L. D. Keigwin, et al., “Thermohaline circulation and prolonged interglacial warmth in the North Atlantic,” Quat. Res. 58(1), 17–21 (2002).CrossRefGoogle Scholar
  48. 48.
    A. Penaud, F. Eynaud, J. L. Turon, et al., “Interglacial variability (MIS 5 and MIS 7) and dinoflagellate cyst assemblages in the Bay of Biscay (North Atlantic),” Mar. Micropaleontol. 68, 136–155 (2008).CrossRefGoogle Scholar
  49. 49.
    U. Pflaumann, M. Sarnthein, M. Chapman, et al., “Glacial North Atlantic: sea-surface conditions reconstructed by GLAMAP 2000,” Paleoceanography 18(3), 1065–1102 (2003).CrossRefGoogle Scholar
  50. 50.
    W. L. Prell, The stability of low latitude sea surface temperatures: An evaluation of the CLIMAP reconstruction with emphasis on positive SST anomalies, Rep. TR 025 (U.S. Dep. Energy, Washington D.C., 1985).Google Scholar
  51. 51.
    S. Rahmstorf, “Thermohaline ocean circulation,” in Encyclopedia of Quaternary Sciences, Ed. by S. A. Elias (Elsevier, Amsterdam, 2006), pp. 1–10.Google Scholar
  52. 52.
    T. L. Rasmussen, E. Thomsen, M. A. S-lubowska, et al., “Paleoceanographic evolution of the SW Svalbard margin (76° N) since 20000 14C yr BP,” Quat. Res. 67, 100–114 (2007).CrossRefGoogle Scholar
  53. 53.
    P. J. Reimer, M. G. L. Baillie, E. Bard, et al., “IntCal09 and Marine09 radiocarbon age calibration curves, 0-50000 years cal BP,” Radiocarbon 51(4), 1111–1150 (2009).Google Scholar
  54. 54.
    W. F. Ruddiman, “Late Quaternary deposition of icerafted sand in the sub-polar North Atlantic (lat 40° to 65°),” Geol. Soc. Am. Bull. 88, 1813–1821 (1977).CrossRefGoogle Scholar
  55. 55.
    M. Sarnthein, K. Stattegger, D. Dreger, et al., Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky concepts, reconstruction, and numerical modeling,” in The Northern North Atlantic: A Changing Environment, Ed. by P. Schäfer et al. (Springer-Verlag, Heidelberg, 2001), pp. 365–410.CrossRefGoogle Scholar
  56. 56.
    M. Sarnthein, U. Pflaumann, and M. Weinelt, “Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates,” Paleoceanography 18(2), 1047 (2003).Google Scholar
  57. 57.
    R. Schiebel, J. Wanek, M. Bork, and C. H. Hemleben, “Planktic foraminiferal production stimulated by chlorophyll redistribution and entrainment of nutrients,” Deep-Sea Res. 48, 721–740 (2001).CrossRefGoogle Scholar
  58. 58.
    J. Simstich, M. Sarnthein, and H. Erlenkeuser, “Paired δ18O signals of Neogloboquadrina pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic seas,” Mar. Micropaleontol. 48, 107–125 (2003).CrossRefGoogle Scholar
  59. 59.
    M. Stuiver and P. J. Reimer, “Extended 14C database and revised CALIB radiocarbon calibration program,” Radiocarbon 35, 215–230 (1993).Google Scholar
  60. 60.
    H. V. Thurman and A. P. Trujillo, Introductory Oceanography, (Prentice Hall, New Jersey, 2004).Google Scholar
  61. 61.
    C. Waelbroeck, L. Labeyrie, J.-C. Duplessy, et al., “Improving past sea surface temperature estimates based on planktonic fossil faunas,” Paleoceanography 13, 272–283 (1998).CrossRefGoogle Scholar
  62. 62.
    A. K. Wright and B. P. Flower, “Surface and deep ocean circulation in the subpolar North Atlantic during the mid-Pleistocene revolution,” Paleoceanography 17(4), 1–16 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • L. D. Bashirova
    • 1
    • 2
    Email author
  • E. S. Kandiano
    • 3
  • V. V. Sivkov
    • 1
    • 2
  • H. A. Bauch
    • 4
  1. 1.P.P. Shirshov Institute of Oceanology, Atlantic BranchRussian Academy of SciencesKaliningradRussia
  2. 2.Immanuel Kant Baltic Federal UniversityKaliningradRussia
  3. 3.Research Center for Marine GeosciencesGEOMAR-University of KielKielGermany
  4. 4.Mainz Academy of Sciences, Humanities, and LiteratureMainzGermany

Personalised recommendations