, Volume 54, Issue 6, pp 688–694 | Cite as

Lagrangian methods for observation of intrathermocline eddies in ocean

  • B. N. Filyushkin
  • M. A. Sokolovskiy
  • N. G. Kozhelupova
  • I. M. Vagina
Marine Physics


Intrathermocline anticyclonic eddies (lenses) of Mediterranean origin are regularly observed in the Eastern part of the Atlantic Ocean. These eddies are identified both from satellites as altimetry and seasurface temperature (SST) changes and according to data of neutral buoyancy floats (NBF) placed in the body of a lens. In this paper, in the framework of a three-layer quasi-geostrophic model, using the contour dynamics method, we consider some theoretical aspects of lens movement observations made by acoustic NBF and freely drifting buoys of the Argo project. Direct experimental observation data on the lenses’ drift in the North Atlantic qualitatively confirmed the results of our numerical experiments. In particular, it is shown that the spin of the lens has an advective influence on the behavior of NBF at distances of several lens radii.


Argo Instantaneous Configuration Float Trajectory Lens Radius Passive Scalar Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Demidov, B. N. Filyushkin, and N. G. Kozhelupova, “Detection of Mediterranean lenses in the Atlantic Ocean by profilers of the Argo project,” Oceanology (Engl. Transl.) 52(2), 171–180 (2012).Google Scholar
  2. 2.
    M. A. Sokolovskiy, “Modeling of three-layer vortex movements in the ocean by contour dynamics method,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 27(5), 550–562 (1991).Google Scholar
  3. 3.
    B. N. Filyushkin, M. A. Sokolovskiy, N. G. Kozhelupova, and I. M. Vagina, “Dynamics of intrathermocline lenses,” Dokl. Earth Sci. 434(2), 1377–1380 (2010).CrossRefGoogle Scholar
  4. 4.
    B. N. Filyushkin, M. A. Sokolovskiy, N. G. Kozhelupova, and I. M. Vagina, “Reflection of intrathermocline eddies on the ocean surface,” Dokl. Earth Sci. 439(1), 986–989 (2011).CrossRefGoogle Scholar
  5. 5.
    B. N. Filyushkin, M. A. Sokolovskiy, N. G. Kozhelupova, and I. M. Vagina, “Evolution of intrathermocline eddies moving over a submarine hill,” Dokl. Earth Sci. 441(2), 1757–1760 (2011).CrossRefGoogle Scholar
  6. 6.
    L. Armi, D. Hebert, N. Oakey, et al., “Two years in the life of a Mediterranean salt lens,” J. Phys. Oceanogr. 19(3), 354–370 (1989).CrossRefGoogle Scholar
  7. 7.
    I. Bashmachnikov and X. Carton, “Surface signature of Mediterranean water eddies in the Northeastern Atlantic: effect of the upper ocean stratification,” Ocean Sci. 8, 931–943 (2012).CrossRefGoogle Scholar
  8. 8.
    X. Carton, N. Daniault, J. Alves, et al., “Meddy dynamics and interaction with neighboring eddies southwest of Portugal: observations and modeling,” J. Geophys. Res., C: Oceans Atmos. 115, 06017 (2010). doi: 10.1029/2009JC005646.CrossRefGoogle Scholar
  9. 9.
    B. N. Filyushkin and M. A. Sokolovskiy, “Modeling the evolution of intrathermocline lenses in the Atlantic Ocean,” J. Mar. Res. 69(2–3), 191–220 (2011).CrossRefGoogle Scholar
  10. 10.
    K. V. Koshel, E. A. Ryzhov, and V. V. Zhmur, “Diffusion-affected passive scalar transport in an ellipsoidal vortex in a shear flow,” Nonlin. Processes Geophys. 20(4), 437–444 (2013).CrossRefGoogle Scholar
  11. 11.
    P. L. Richardson, A. S. Bower, and W. Zenk, “Summary of meddies tracked by floats,” Int. WOCE Newslett. 34, 18–20 (1999).Google Scholar
  12. 12.
    P. L. Richardson, D. Walsh, L. Armi, et al., “Tracking three meddies with SOFAR floats,” J. Phys. Oceanogr. 19(3), 371–383 (1989).CrossRefGoogle Scholar
  13. 13.
    P. L. Richardson and C.M. Wooding, “RAFOS float trajectories in meddies during the Semaphore Experiment, 1993–1995,” in Woods Hole Oceanographic Institute, WHOI-99-05, Technical Report, 1999.Google Scholar
  14. 14.
    M. A. Sokolovskiy, B. N. Filyushkin, and X. J. Carton, “Dynamics of intrathermocline vortices in a gyre flow over a seamount chain,” Ocean Dyn. 63(7), 741–760 (2013).CrossRefGoogle Scholar
  15. 15.
    D. Stammer, H.-H. Hinrichsen, and R. H. Käse, “Can meddies be detected by satellite altimetry?” J. Geophys. Res., C: Oceans Atmos. 96(4), 7005–7014 (1991).CrossRefGoogle Scholar
  16. 16.
    V. V. Zhmur, E. A. Ryzhov, and K. V. Koshel, “Ellipsoidal vortex in a nonuniform flow. Dynamics and chaotic advections,” J. Mar. Res. 69(2–3), 435–461 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • B. N. Filyushkin
    • 1
  • M. A. Sokolovskiy
    • 2
  • N. G. Kozhelupova
    • 1
  • I. M. Vagina
    • 3
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Water Problems InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations