Skip to main content
Log in

Mass extinction of the marine biota at the Ordovician-Silurian transition due to environmental changes

  • Marine Geology
  • Published:
Oceanology Aims and scope

Abstract

The terminal Ordovician was marked by one of five great mass extinction events of the Phanerozoic (445.6–443.0 Ma ago), when up to 86% of the marine species became extinct. The rapid onset of the continental glaciation on Gondwana determined by its position in the South Pole area; the cooling; the hydrodynamic changes through the entire water column in the World Ocean; and the corresponding sea level fall, which was responsible for the reduction of shelf areas and shallow-water basins, i.e., the main ecological niche of the Ordovician marine biota, were main prerequisites of the stress conditions. Similar to other mass extinction events, these processes were accompanied by volcanism, impact events, a corresponding reduction of the photosynthesis and bioproductivity, the destruction of food chains, and anoxia. The appearance and development of terrestrial plants and microphytoplankton, which consumed atmospheric carbon dioxide, thus, diminishing the greenhouse effect and promoting the transition of the climatic system to the glacial mode, played a unique role in that period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Barash, “Causes and prime causes of mass biotic extinctions in the phanerozoic,” Dokl. Earth Sci. 445(2), 925–928 (2012).

    Article  Google Scholar 

  2. H. A. Armstrong, “Biotic recovery after mass extinction: the role of climate and ocean-state in the post-glacial (Late Ordovician-Early Silurian) recovery of the conodonts,” in Biotic Recovery from Mass Extinction (Geol. Soc. Spec. Publ., 1996), Vol. 102, pp. 105–117.

    Google Scholar 

  3. C. R. Barnes and S. M. Bergström, “Conodont biostratigraphy of the Uppermost Ordovician and lowermost Silurian,” Bull. Br. Mus. Nat. Hist. (Geol.) 43, 325–343 (1988).

    Google Scholar 

  4. A. D. Barnosky, N. Matzke, S. Tomiya, et al., “Has the Earth’s sixth mass extinction already arrived?” Nature 471, 51–57 (2011).

    Article  Google Scholar 

  5. M. J. Benton, “Diversification and extinction in the history of life,” Science 268, 52–58 (1995).

    Article  Google Scholar 

  6. S. M. Bergström, W. D. Huff, M. R. Saltzman, et al., “The greatest volcanic ash falls in the Phanerozoic: Trans-Atlantic relations of the Ordovician Millbrig and Kinnekulle K-bentonites,” Sediment. Rec. 2(4), 4–8 (2004).

    Google Scholar 

  7. W. B. N. Berry, M. S. Quinby-Hunt, and P. Wilde, “Impact of Late Ordovician Glaciation-Deglaciation on marine life,” in Effects of Past Global Change on Life: Studies in Geophysics (Natl. Acad. Press, Washington, D.C., 1995), pp. 34–46.

    Google Scholar 

  8. P. J. Brenchley, G. A. Carden, L. Hints, et al., “High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation,” GSA Bull. 115(1), 89–104 (2003).

    Article  Google Scholar 

  9. P. J. Brenchley, J. D. Marshall, G. A. F. Carden, et al., “Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period,” Geology 22, 295–298 (1994).

    Article  Google Scholar 

  10. W. Buggisch, M. M. Joachimski, O. Lehnert, et al., “Did intense volcanism trigger the first Late Ordovician icehouse?” Geology 38(4), 327–330 (2010).

    Article  Google Scholar 

  11. Earth Impact Database, University of New Brunswick. http://www.passc.net/EarthImpactDatabase/index.html. Assessed September 18, 2011

    Google Scholar 

  12. S. Finnegan, K. Bergmann, J. M. Eiler, et al., “The magnitude and duration of late Ordovician-early Silurian glaciation,” Science 331(6019), 903–906 (2011).

    Article  Google Scholar 

  13. R. A. Fortey, “There are extinctions and extinctions: examples from the lower Paleozoic,” Philos. Trans. R. Soc., B 325, 327–355 (1989).

    Article  Google Scholar 

  14. R. A. Fortey and L. R. M. Cocks, “Late Ordovician global warming — the Boda event,” Geology 33(5), 405–408 (2005). doi 10.1130/G21180.1

    Article  Google Scholar 

  15. E. Gutmann, “Climate and evolution in times past,” Ars Technica, 2008. doi 10.1126/science.1155814.

    Google Scholar 

  16. A. Hallam and P. B. Wignall, Mass Extinctions and Their Aftermath (Oxford Univ. Press, 1997).

    Google Scholar 

  17. B. U. Haq and S. R. Schutter, “A chronology of Paleozoic sea level changes,” Science 322, 64–68 (2008).

    Article  Google Scholar 

  18. A. D. Herrmann, M. E. Patzkowsky, and D. Pollard, “Obliquity forcing with 8–12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation,” Geology 31(6), 485–488 (2003).

    Article  Google Scholar 

  19. T. M. Lenton, M. Crouch, M. Johnson, et al., “First plants cooled the Ordovician,” Nat. Geosci. 5, 86–89 (2012). doi: 10.1038/ngeo1390/

    Article  Google Scholar 

  20. C. Mac Niocaill, B. A. van der Pluijm, and R. van der Voo, “Ordovician paleogeography and the evolution of the Iapetus ocean,” Geology 25, 159–162 (1997).

    Article  Google Scholar 

  21. H. Qing, C. R. Barnes, D. Buhl, and J. Veizer, “The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: relationships to geological events and implications for coeval seawater,” Geochim. Cosmochim. Acta 62, 1721–1733 (1998).

    Article  Google Scholar 

  22. R. A. Rohde, “Phanerozoic carbon dioxide (Global Warming Art project),” 2006. http://en.wikipedia.org/wiki/Carbon-dioxide-in-Earth’s-atmosphere

    Google Scholar 

  23. J. Rong, X. Chen, Z. Zhou, and J. Chen, “Response of major organism groups to global environmental perturbations through the Ordovician-Silurian transition in south China,” in The 33 Int. Geol. Congr. Oslo, August 6–14, 2008, Abstracts, HPF-13, 2008.

    Google Scholar 

  24. M. R. Saltzman and S. Y. Young, “Long-lived glaciation in the Late Ordovician? Isotopic and sequencestratigraphic evidence from western Laurentia,” Geology 33, 109–112 (2005).

    Article  Google Scholar 

  25. B. Schmitz and S. M. Bergström, “Chemostratigraphy in the Swedish Upper Ordovician: regional significance of the Hirnantian δ13C excursion (HICE) in the Boda Limestone of the Siljan region,” GFFV 129, 133–140 (2007). doi 10.1080/11035890701292133.

    Article  Google Scholar 

  26. J. J. Sepkoski, Jr., “Phanerozoic overview of mass extinctions,” in Patterns and Processes in the History of Life (Springer-Verlag, Berlin, 1986), pp. 277–295.

    Chapter  Google Scholar 

  27. J. J. Sepkoski, Jr., “A model of onshore-offshore change in faunal diversity,” Paleobiology 17, 58–77 (1991).

    Google Scholar 

  28. J. J. Sepkoski, Jr., “Competition in macroevolution: the double wedge revisited,” in Evolutionary Paleobiology, Ed. by D. Jablonski, et al. (Univ. of Chicago Press, Chicago, IL, 1996), pp. 211–255.

    Google Scholar 

  29. T. Servais, O. Lehnert, J. Li, et al., “The Ordovician biodiversification: revolution in the oceanic trophic chain,” Lethaia 41, 99–109 (2008).

    Article  Google Scholar 

  30. V. L. Sharpton, B. O. Dressler, R. R. Herrick, et al., “New constraints on the Slate Islands impact structure, Ontario, Canada,” Geology 24, 851–854 (1996).

    Article  Google Scholar 

  31. P. M. Sheehan, “The Late Ordovician mass extinction,” Annu. Rev. Earth Planet. Sci. 29, 331–364 (2001).

    Article  Google Scholar 

  32. G. A. Shields, G. A. Carden, J. Veizer, et al., “Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition,” Geochim. Cosmochim. Acta 67, 2005–2025 (2003).

    Article  Google Scholar 

  33. O. E. Sutcliffe, J. A. Dowdeswell, R. J. Whittington, et al., “Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth’s orbit,” Geology 28, 967–970 (2000).

    Article  Google Scholar 

  34. M. E. Tuckey and R. L. Anstey, “Late Ordovician extinction of bryozoans,” Lethaia 25, 111–117 (1992).

    Article  Google Scholar 

  35. B. D. Webby, F. Paris, M. L. Droser, et al., The Great Ordovician Biodiversification Event (Columbia Univ. Press, New York, 2004).

    Google Scholar 

  36. D. Yan, D. Chen, Q. Wang, et al., “Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform, South China,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 274, 32–39 (2009).

    Article  Google Scholar 

  37. S. A. Young, M. R. Saltzman, W. I. Ausich, et al., “Did changes in atmospheric CO2 coincide with latest Ordovician glacial-interglacial cycles?” Palaeogeogr., Palaeoclimatol., Palaeoecol. 296, 376–388 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Barash.

Additional information

Original Russian Text © M.S. Barash, 2014, published in Okeanologiya, 2014, Vol. 54, No. 6, pp. 825–832.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barash, M.S. Mass extinction of the marine biota at the Ordovician-Silurian transition due to environmental changes. Oceanology 54, 780–787 (2014). https://doi.org/10.1134/S0001437014050014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437014050014

Keywords

Navigation