Advertisement

Oceanology

, Volume 54, Issue 6, pp 780–787 | Cite as

Mass extinction of the marine biota at the Ordovician-Silurian transition due to environmental changes

  • M. S. Barash
Marine Geology

Abstract

The terminal Ordovician was marked by one of five great mass extinction events of the Phanerozoic (445.6–443.0 Ma ago), when up to 86% of the marine species became extinct. The rapid onset of the continental glaciation on Gondwana determined by its position in the South Pole area; the cooling; the hydrodynamic changes through the entire water column in the World Ocean; and the corresponding sea level fall, which was responsible for the reduction of shelf areas and shallow-water basins, i.e., the main ecological niche of the Ordovician marine biota, were main prerequisites of the stress conditions. Similar to other mass extinction events, these processes were accompanied by volcanism, impact events, a corresponding reduction of the photosynthesis and bioproductivity, the destruction of food chains, and anoxia. The appearance and development of terrestrial plants and microphytoplankton, which consumed atmospheric carbon dioxide, thus, diminishing the greenhouse effect and promoting the transition of the climatic system to the glacial mode, played a unique role in that period.

Keywords

Ordovician Gondwana Mass Extinction Late Ordovician Extinction Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Barash, “Causes and prime causes of mass biotic extinctions in the phanerozoic,” Dokl. Earth Sci. 445(2), 925–928 (2012).CrossRefGoogle Scholar
  2. 2.
    H. A. Armstrong, “Biotic recovery after mass extinction: the role of climate and ocean-state in the post-glacial (Late Ordovician-Early Silurian) recovery of the conodonts,” in Biotic Recovery from Mass Extinction (Geol. Soc. Spec. Publ., 1996), Vol. 102, pp. 105–117.Google Scholar
  3. 3.
    C. R. Barnes and S. M. Bergström, “Conodont biostratigraphy of the Uppermost Ordovician and lowermost Silurian,” Bull. Br. Mus. Nat. Hist. (Geol.) 43, 325–343 (1988).Google Scholar
  4. 4.
    A. D. Barnosky, N. Matzke, S. Tomiya, et al., “Has the Earth’s sixth mass extinction already arrived?” Nature 471, 51–57 (2011).CrossRefGoogle Scholar
  5. 5.
    M. J. Benton, “Diversification and extinction in the history of life,” Science 268, 52–58 (1995).CrossRefGoogle Scholar
  6. 6.
    S. M. Bergström, W. D. Huff, M. R. Saltzman, et al., “The greatest volcanic ash falls in the Phanerozoic: Trans-Atlantic relations of the Ordovician Millbrig and Kinnekulle K-bentonites,” Sediment. Rec. 2(4), 4–8 (2004).Google Scholar
  7. 7.
    W. B. N. Berry, M. S. Quinby-Hunt, and P. Wilde, “Impact of Late Ordovician Glaciation-Deglaciation on marine life,” in Effects of Past Global Change on Life: Studies in Geophysics (Natl. Acad. Press, Washington, D.C., 1995), pp. 34–46.Google Scholar
  8. 8.
    P. J. Brenchley, G. A. Carden, L. Hints, et al., “High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation,” GSA Bull. 115(1), 89–104 (2003).CrossRefGoogle Scholar
  9. 9.
    P. J. Brenchley, J. D. Marshall, G. A. F. Carden, et al., “Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period,” Geology 22, 295–298 (1994).CrossRefGoogle Scholar
  10. 10.
    W. Buggisch, M. M. Joachimski, O. Lehnert, et al., “Did intense volcanism trigger the first Late Ordovician icehouse?” Geology 38(4), 327–330 (2010).CrossRefGoogle Scholar
  11. 11.
    Earth Impact Database, University of New Brunswick. http://www.passc.net/EarthImpactDatabase/index.html. Assessed September 18, 2011Google Scholar
  12. 12.
    S. Finnegan, K. Bergmann, J. M. Eiler, et al., “The magnitude and duration of late Ordovician-early Silurian glaciation,” Science 331(6019), 903–906 (2011).CrossRefGoogle Scholar
  13. 13.
    R. A. Fortey, “There are extinctions and extinctions: examples from the lower Paleozoic,” Philos. Trans. R. Soc., B 325, 327–355 (1989).CrossRefGoogle Scholar
  14. 14.
    R. A. Fortey and L. R. M. Cocks, “Late Ordovician global warming — the Boda event,” Geology 33(5), 405–408 (2005). doi 10.1130/G21180.1CrossRefGoogle Scholar
  15. 15.
    E. Gutmann, “Climate and evolution in times past,” Ars Technica, 2008. doi 10.1126/science.1155814.Google Scholar
  16. 16.
    A. Hallam and P. B. Wignall, Mass Extinctions and Their Aftermath (Oxford Univ. Press, 1997).Google Scholar
  17. 17.
    B. U. Haq and S. R. Schutter, “A chronology of Paleozoic sea level changes,” Science 322, 64–68 (2008).CrossRefGoogle Scholar
  18. 18.
    A. D. Herrmann, M. E. Patzkowsky, and D. Pollard, “Obliquity forcing with 8–12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation,” Geology 31(6), 485–488 (2003).CrossRefGoogle Scholar
  19. 19.
    T. M. Lenton, M. Crouch, M. Johnson, et al., “First plants cooled the Ordovician,” Nat. Geosci. 5, 86–89 (2012). doi: 10.1038/ngeo1390/CrossRefGoogle Scholar
  20. 20.
    C. Mac Niocaill, B. A. van der Pluijm, and R. van der Voo, “Ordovician paleogeography and the evolution of the Iapetus ocean,” Geology 25, 159–162 (1997).CrossRefGoogle Scholar
  21. 21.
    H. Qing, C. R. Barnes, D. Buhl, and J. Veizer, “The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: relationships to geological events and implications for coeval seawater,” Geochim. Cosmochim. Acta 62, 1721–1733 (1998).CrossRefGoogle Scholar
  22. 22.
    R. A. Rohde, “Phanerozoic carbon dioxide (Global Warming Art project),” 2006. http://en.wikipedia.org/wiki/Carbon-dioxide-in-Earth’s-atmosphere Google Scholar
  23. 23.
    J. Rong, X. Chen, Z. Zhou, and J. Chen, “Response of major organism groups to global environmental perturbations through the Ordovician-Silurian transition in south China,” in The 33 Int. Geol. Congr. Oslo, August 6–14, 2008, Abstracts, HPF-13, 2008.Google Scholar
  24. 24.
    M. R. Saltzman and S. Y. Young, “Long-lived glaciation in the Late Ordovician? Isotopic and sequencestratigraphic evidence from western Laurentia,” Geology 33, 109–112 (2005).CrossRefGoogle Scholar
  25. 25.
    B. Schmitz and S. M. Bergström, “Chemostratigraphy in the Swedish Upper Ordovician: regional significance of the Hirnantian δ13C excursion (HICE) in the Boda Limestone of the Siljan region,” GFFV 129, 133–140 (2007). doi 10.1080/11035890701292133.CrossRefGoogle Scholar
  26. 26.
    J. J. Sepkoski, Jr., “Phanerozoic overview of mass extinctions,” in Patterns and Processes in the History of Life (Springer-Verlag, Berlin, 1986), pp. 277–295.CrossRefGoogle Scholar
  27. 27.
    J. J. Sepkoski, Jr., “A model of onshore-offshore change in faunal diversity,” Paleobiology 17, 58–77 (1991).Google Scholar
  28. 28.
    J. J. Sepkoski, Jr., “Competition in macroevolution: the double wedge revisited,” in Evolutionary Paleobiology, Ed. by D. Jablonski, et al. (Univ. of Chicago Press, Chicago, IL, 1996), pp. 211–255.Google Scholar
  29. 29.
    T. Servais, O. Lehnert, J. Li, et al., “The Ordovician biodiversification: revolution in the oceanic trophic chain,” Lethaia 41, 99–109 (2008).CrossRefGoogle Scholar
  30. 30.
    V. L. Sharpton, B. O. Dressler, R. R. Herrick, et al., “New constraints on the Slate Islands impact structure, Ontario, Canada,” Geology 24, 851–854 (1996).CrossRefGoogle Scholar
  31. 31.
    P. M. Sheehan, “The Late Ordovician mass extinction,” Annu. Rev. Earth Planet. Sci. 29, 331–364 (2001).CrossRefGoogle Scholar
  32. 32.
    G. A. Shields, G. A. Carden, J. Veizer, et al., “Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition,” Geochim. Cosmochim. Acta 67, 2005–2025 (2003).CrossRefGoogle Scholar
  33. 33.
    O. E. Sutcliffe, J. A. Dowdeswell, R. J. Whittington, et al., “Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth’s orbit,” Geology 28, 967–970 (2000).CrossRefGoogle Scholar
  34. 34.
    M. E. Tuckey and R. L. Anstey, “Late Ordovician extinction of bryozoans,” Lethaia 25, 111–117 (1992).CrossRefGoogle Scholar
  35. 35.
    B. D. Webby, F. Paris, M. L. Droser, et al., The Great Ordovician Biodiversification Event (Columbia Univ. Press, New York, 2004).Google Scholar
  36. 36.
    D. Yan, D. Chen, Q. Wang, et al., “Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform, South China,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 274, 32–39 (2009).CrossRefGoogle Scholar
  37. 37.
    S. A. Young, M. R. Saltzman, W. I. Ausich, et al., “Did changes in atmospheric CO2 coincide with latest Ordovician glacial-interglacial cycles?” Palaeogeogr., Palaeoclimatol., Palaeoecol. 296, 376–388 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations