Oceanology

, Volume 54, Issue 4, pp 401–413 | Cite as

The frontal and jet structure south of Africa based on the data of the SR02 section in December of 2009

Marine Physics

Abstract

The frontal structure in the region south of Africa is investigated on the basis of CTD and SADCP measurements along the SR02 hydrophysical section carried by the R/V Akademik Ioffe in December of 2009 from the Cape of Good Hope to 57° S at the Prime Meridian. Eleven jets of the Antarctic Circumpolar Current (ACC) were revealed along the section. These were six jets of the Subantarctic Current (SAC), three jets of the South Polar Current (SPC), and two jets of the Southern Antarctic Current (SthAC). The jet combining the Weddell Front and the Southern Boundary of the ACC was also revealed. All the jets of the SPC based on the data of direct measurements were joined into a single “superjet.” The others were manifested by the local velocity maxima in the surface layer of the ocean. The subtropical water along the section from the Southern Subtropical Front to the Shelf-Slope Front near the African shore was almost completely represented by the Indian Ocean (Agulhas Retroflection) water modified by mixing with the fresher water of the southeastern periphery of the Subtropical Atlantic.

References

  1. 1.
    V. A. Burkov, “Antarctic jets,” Okeanologiya (Moscow) 34(2), 169–177 (1994).Google Scholar
  2. 2.
    M. N. Koshlyakov, S. V. Gladyshev, R. Yu. Tarakanov, and D. A. Fedorov, “Currents in the Western Drake Passage according to the observations in January of 2010,” Oceanology (Engl. Transl.) 51(2), 187–198 (2011).Google Scholar
  3. 3.
    R. Yu. Tarakanov, “Southern jets of the Antarctic circumpolar current in the Eastern Pacific Antarctic,” Oceanology (Engl. Transl.) 51(4), 588–598 (2011).Google Scholar
  4. 4.
    R. Yu. Tarakanov and A. M. Gritsenko, “Structure of the atmospheric fronts in south of Africa according to the data of SR02 transect in December of 2009 and satellite altimetry,” Issled. Rossii 14, 672–684 (2011). http://zhurnal.ape.relarn.ru/articles/2011/053.pdf Google Scholar
  5. 5.
    R. Yu. Tarakanov and A. M. Gritsenko, “Fine jet structure of Antarctic Circumpolar Current south of Africa,” Okeanologiya (Moscow) 54, (2014) (in press).Google Scholar
  6. 6.
    M. Arhan, S. Speich, C. Messager, et al., “Anticyclonic and cyclonic eddies of subtropical origin in the Subantarctic zone south of Africa,” J. Geophys. Res., C: Oceans Atmos. 116, 11004 (2011). doi 10.1029/2011JC007140CrossRefGoogle Scholar
  7. 7.
    I. M. Belkin and P. C. Cornillon, “Fronts in the World Ocean’s Large Marine Ecosystems. International Council for the Exploration of the Sea,” in ICES CM 2007, Vol. D:21.Google Scholar
  8. 8.
    I. M. Belkin and A. L. Gordon, “Southern Ocean fronts from the Greenwich meridian to Tasmania,” J. Geophys. Res., C: Oceans Atmos. 101(2), 3675–3696 (1996).CrossRefGoogle Scholar
  9. 9.
    O. Boebel, J. R. Lutjeharms, E. Schmid, et al., “The Cape Cauldron: a regime of turbulent inter-ocean exchange,” Deep Sea Res., Part II 50(1), 57–86 (2003).CrossRefGoogle Scholar
  10. 10.
    G. Dencausse, M. Arhan, and S. Speich, “Is there a continuous Subtropical Front south of Africa?” J. Geophys. Res., C: Oceans Atmos. 116, 02027 (2011). doi 10.1029/2010JC006587CrossRefGoogle Scholar
  11. 11.
    C. M. Duncombe Rae, “A demonstration of the hydrographic partition of the Benguela upwelling ecosystem at 26°40′ S,” Afr. J. Mar. Sci. 27(3), 617–628 (2005)CrossRefGoogle Scholar
  12. 12.
    S. L. Garzoli and A. L. Gordon, “Origins and variability of the Benguela Current,” J. Geophys. Res., C: Oceans Atmos. 101(1), 897–906 (1996).CrossRefGoogle Scholar
  13. 13.
    S. Gladyshev, M. Arhan, A. Sokov, and S. Speich, “A hydrographic section from South Africa to the southern limit of the Antarctic Circumpolar Current at the Greenwich meridian,” Deep Sea Res., Part I 55(10), 1284–1303 (2008).CrossRefGoogle Scholar
  14. 14.
    V. V. Gouretski and K. P. Koltermann, “WOCE global hydrographic climatology,” Ber. Bundesamtes Seeschiffahrt Hydrogr. 35, 1–52 (2004).Google Scholar
  15. 15.
    R. W. Hallberg and A. Gnanadesikan, “The role of eddies in determining the structure and response of the wind driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean project,” J. Phys. Oceanogr. 36(12), 2232–2252 (2006).CrossRefGoogle Scholar
  16. 16.
    O. Höflich, “Climate of the South Atlantic,” in Climate of the Oceans (Elsevier, Amsterdam, 1984), pp. 1–191.Google Scholar
  17. 17.
    C. W. Hughes and E. R. Ash, “Eddy forcing of the mean flow in the Southern ocean,” J. Geophys. Res., C: Oceans Atmos. 106(2), 2713–2722 (2001).CrossRefGoogle Scholar
  18. 18.
    D. R. Jacket and T. J. McDougall, “A neutral density variable for the World’s Ocean,” J. Phys. Oceanogr. 27(2), 237–263 (1997).CrossRefGoogle Scholar
  19. 19.
    O. Klatt, E. Fahrbach, M. Hoppema, and G. Rohardt, “The transport of the Weddell Gyre across the Prime Meridian,” Deep Sea Res., Part II 52(2), 513–528 (2005).CrossRefGoogle Scholar
  20. 20.
    M. E. Maltrud, R. D. Smith, E. J. Semtner, and R. C. Malone, “Global eddy-resolving ocean simulations driven by 1985–1984 atmospheric winds,” J. Geophys. Res., C: Oceans Atmos. 103(13), 30825–30853 (1998).CrossRefGoogle Scholar
  21. 21.
    P. P. Niiler, N. A. Maximenko, and J. C. McWilliams, “Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations,” Geophys. Res. Lett. 30(22), 2164 (2003). doi:10.1029/2003GL018628CrossRefGoogle Scholar
  22. 22.
    A. H. Orsi, Th. Whitworth III, and W. D. Nowlin Jr., “On the meridional extent and fronts of the Antarctic Circumpolar Current,” Deep-Sea Res 42(5), 641–673 (1995).CrossRefGoogle Scholar
  23. 23.
    S. L. Patterson and H. A. Sievers, “The Weddell-Scotia confluence,” J. Phys. Oceanogr. 10(10), 1584–1610 (1980).CrossRefGoogle Scholar
  24. 24.
    R. G. Peterson and T. Whitworth, “The Subantarctic and Polar Fronts in relation to deep water masses through the southwestern Atlantic,” J. Geophys. Res., C: Oceans Atmos. 94(8), 10817–10838 (1989).CrossRefGoogle Scholar
  25. 25.
    R. D. Pollard, J. F. Read, J. T. Allen, et al., “On the physical structure of a front in the Bellingshausen Sea,” Deep Sea Res., Part II 42(4–5), 955–982 (1995).CrossRefGoogle Scholar
  26. 26.
    J. F. Read, R. D. Pollard, A. I. Morrison, and C. Symon, “On the southerly extent of the Antarctic Circumpolar Current in the southeast Pacific,” Deep Sea Res., Part II 42(4–5), 933–954 (1995).CrossRefGoogle Scholar
  27. 27.
    P. L. Richardson, “Agulhas leakage into the Atlantic estimated with subsurface floats and surface drifters,” Deep Sea Res., Part I 54, 1361–1389 (2007).CrossRefGoogle Scholar
  28. 28.
    P. L. Richardson and S. L. Garzoli, “Characteristics of intermediate water flow in the Benguela Current as measured with RAFOS floats,” Deep Sea Res., Part II 50(1), 87–118 (2003).CrossRefGoogle Scholar
  29. 29.
    S. Sokolov and S. R. Rintoul, “Structure of southern ocean fronts at 140° E,” J. Mar. Syst. 37(1–3), 151–184 (2002).CrossRefGoogle Scholar
  30. 30.
    S. Sokolov and S. R. Rintoul, “Multiple jets of the Antarctic Circumpolar Current south of Australia,” J. Phys. Oceanogr. 37(5), 1394–1412 (2007).CrossRefGoogle Scholar
  31. 31.
    S. Sokolov and S. R. Rintoul, “The circumpolar structure and distribution of the Antarctic Circumpolar Current fronts. Part A: Mean circumpolar paths,” J. Geophys. Res., C: Oceans Atmos. 114, 11018 (2009). doi:10.1029/2008JC005108.CrossRefGoogle Scholar
  32. 32.
    S. Sokolov and S. R. Rintoul, “The circumpolar structure and distribution of the Antarctic Circumpolar Current fronts. Part B: Variability and relationship to sea surface height,” J. Geophys. Res., C: Oceans Atmos. 114, 11019 (2009). doi 10.1029/2008JC005248CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations