Oceanology

, Volume 54, Issue 4, pp 465–477 | Cite as

Environmental evolution of the southern Chukchi Sea in the Holocene

  • E. A. Gusev
  • N. Yu. Anikina
  • L. G. Derevyanko
  • T. S. Klyuvitkina
  • L. V. Polyak
  • E. I. Polyakova
  • P. V. Rekant
  • A. Yu. Stepanova
Marine Geology

Abstract

The molluscan shells from three drill and two piston cores obtained in the southern Russian sector of the Chukchi Sea are dated by the AMS 14C measurement method back to 0.8–3.5 and 9.2–10.5 ka. The period of 9–10 ka was marked by increased sedimentation rates related to the transgression onset. The fossils in the lower Holocene section exhibit the successive upward replacement of brackish-water organisms by their marine counterparts. After the opening of the Bering Strait in the middle Holocene, the sedimentation was under influence of the increased bioproductivity of the waters. The climatic optimum in the Chukotka region corresponds to the early Holocene, while the late Holocene was characterized by the wider development of the ice cover on the shelf.

Keywords

Holocene Arctic Ocean Diatom Assemblage Palynomorphs Piston Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Astakhov, A. A. Bosin, A. N. Kolesnik, D. A. Korshunov, E. A. Logvina, and K. Crane, “Geological investigations in the Chukchi Sea and the adjacent areas of the Arctic Ocean during the RUSALCA-2009 expedition,” Russ. J. Pac. Geol. 4(6), 532–537 (2010).CrossRefGoogle Scholar
  2. 2.
    A. S. Astakhov, E. A. Gusev, A. N. Kolesnik, and R. B. Shakirov, “Conditions of the accumulation of organic matter and metals in the bottom sediments of the Chukchi Sea,” Russ. Geol. Geophys. 54(9), 1056–1070 (2013).CrossRefGoogle Scholar
  3. 3.
    S. L. Vartanyan, Geology and Paleogeography of Wrangel Island in the End of Quaternary (Izd. Ivana Limbakha, St. Petersburg, 2007) [in Russian].Google Scholar
  4. 4.
    E. A. Zykov, “Ecological and geochemical characteristcs of bottom sediments in the water of Chukchi-Alaska region,” Izv. Ross. Gos. Pedagog. Univ. 141, 131–140 (2011).Google Scholar
  5. 5.
    O. I. Kalinichenko, A. A. Karakozov, and P. V. Zybinskii, “New techniques of interval drilling in a shelf,” Zb. Nauk. Pr. Don. Nats. Tekhn. Univ., Ser. Girnich.-Geol., No. 36, 144–148 (2001).Google Scholar
  6. 6.
    T. S. Klyuvitkina and H. A. Bauch, “Hydrological changes in the Laptev Sea during the Holocene inferred from the studies of aquatic palynomorphs,” Oceanology(Moscow). 46(6), 859–868 (2006).Google Scholar
  7. 7.
    O. M. Lev, “The complexes of Neogene-Quternary ostracodes,” in General Problems of Late Cenozoic (Nedra, St. Petersburg, 1983), pp. 104–143.Google Scholar
  8. 8.
    M. A. Levitan, Yu. A. Lavrushin, and R. Stein, The History of Sedimentation in the Arctic Ocean and Subarctic Seas over Last 130 Thousand Years (GEOS, Moscow, 2007) [in Russian].Google Scholar
  9. 9.
    A. Yu. Lein, A. S. Savichev, I. I. Rusanov, et al., “Biogeochemical processes in the Chukchi Sea,” Lithol. Mineral. Resour. 42(3), 221–239 (2007).CrossRefGoogle Scholar
  10. 10.
    A. P. Lisitzin, “Marginal filter of the oceans,” Okeanologiya (Moscow) 34(5), 735–747 (1994).Google Scholar
  11. 11.
    A. P. Lisitzin, “Marine ice-rafting as a new type of sed-imentogenesis in the Arctic and novel approaches to studying sedimentary processes,” Russ. Geol. Geophys. 51(1), 12–47 (2010).CrossRefGoogle Scholar
  12. 12.
    A. G. Matul, T. A. Khusid, V. V. Mukhina, et al., “Current and Late Holocene environmental conditions of the southeastern shelf of the Laptev Sea according to the data of microimages,” Oceanology (Moscow) 47(1), 80–90 (2007).CrossRefGoogle Scholar
  13. 13.
    L. N. Morozova, “The level of Late Pleistocene (sartane) regression in the East-Arctic seas shelf,” in Geology and Geomorphology of the Shelves and Continental Slopes (Nauka, Moscow, 1985), pp. 85–88.Google Scholar
  14. 14.
    Yu. A. Pavlidis, “Sedimentation conditions in the Chukchi Sea and facial-sedimentary zones of its shelf,” in Problems of Geomorphology, Lithology, and Lithodynamics (Nauka, Moscow, 1982), pp. 47–76.Google Scholar
  15. 15.
    Yu. A. Pavlidis, Yu. M. Babaev, A. S. Ionin, et al., “Peculiarities of polar morpholithogenesis of the shelves of the Northeastern USSR,” in Continental and Island Shelves: Reliefs and Sediments (Nauka, Moscow, 1981), pp. 33–96.Google Scholar
  16. 16.
    Ye. I. Polyakova, “Stratigraphy of bottom sediments and paleogeographic conditions of sedimentation in the Chukchi Sea according to the data of diatom analysis,” in Geology of Continental Terrace of the Marginal and Internal Seas (Mosk. Gos. Univ., Moscow, 1989), pp. 136–148.Google Scholar
  17. 17.
    Ye. I. Polyakova, “Holocene of the Arctic seas of Eurasia (diatom stratigraphy and paleooceanology,” Okeanologiya (Moscow) 37(2), 269–278 (1997).Google Scholar
  18. 18.
    A. P. Puminov, “Stratigraphy of Cenozoic layer in East-Arctic shelf zone of USSR,” in Geology and Mineralogy of Arctic Zone of USSR (Sevmorgeologiya, Leningrad, 1981), pp. 7–27.Google Scholar
  19. 19.
    Kh. M. Saidova, Ecology of Shelf Communities of Foraminifers and Paleoenvironment of the Bering and Chukchi Seas (Nauka, Moscow, 1994) [in Russian].Google Scholar
  20. 20.
    Yu. P. Semenov, “Some peculiarities of sedimentogenesis in East Siberian and Chukchi seas,” in Anthropogenic Period in Arctic and Subarctic (Nedra, Moscow, 1965), Vol. 143, pp. 350–352.Google Scholar
  21. 21.
    A. Y. Stepanova, E. E. Taldenkova, and H. A. Bauch, “Quaternary Arctic ostracodes and their use in paleoreconstructions,” Palentol. Zh., 44(1), 41–48 (2010).Google Scholar
  22. 22.
    E. I. Shornikov, “Class Ostracoda, orders Platycopida and Podocopida,” in Studies of Marine Fauna, Ed. by B. I. Sirenko (Zool. Inst. Ross. Akad. Nauk, St. Petersburg, 2001), Vol. 51, No. 59, pp. 99–103.Google Scholar
  23. 23.
    H. A. Bauch, T. Mueller-Lupp, E. Taldenkova, et al., “Chronology of the Holocene transgression at the North Siberian margin,” Global Planet. Change 31(1–4), 125–139 (2001).CrossRefGoogle Scholar
  24. 24.
    H. Bauch and Ye. I. Polyakova, “Diatom-inferred salinity records from the Arctic Siberian margin: implications for fluvial runoff patterns during the Holocene,” Paleoceanography 18(2), 501–510 (2003).CrossRefGoogle Scholar
  25. 25.
    J. P. Bujak, “Cenozoic dinoflagellate cysts and acritarchs from the Bering Sea and northern North Pacific, DSDP Leg 19,” Micropaleontology 30(2), 180–212 (1984).CrossRefGoogle Scholar
  26. 26.
    J. S. Creager and D. A. McManus, “Pleistocene drainage patterns on the floor of the Chukchi Sea,” Mar. Geol., No. 3, 279–290 (1965).Google Scholar
  27. 27.
    R. Devillers and A. de Vernal, “Distribution of dinoflagellate cysts in surface sediments of the northern North Atlantic in relation to nutrient content and productivity in surface waters,” Mar. Geol. 166(1–4), 103–124 (2000).CrossRefGoogle Scholar
  28. 28.
    A. Grantz, D. M. Mann, and S. D. May, “Multichannel seismic-reflection data collected in 1978 in the Eastern Chukchi Sea,” in US Geological Survey Open File Report 86-206, 1978.Google Scholar
  29. 29.
    E. A. Gusev, I. A. Andreeva, N. Y. Anikina, et al., “Stratigraphy of Late Cenozoic sediments of the western Chukchi Sea: New results from shallow drilling and seismic-reflection profiling,” Global Planet. Change 68(1–2), 115–131 (2009).CrossRefGoogle Scholar
  30. 30.
    J. C. Hill, N. W. Driscoll, J. Brigham-Grette, et al., “New evidence for high discharge to the Chukchi shelf since the Last Glacial Maximum,” Quat. Res. 68(2), 271–279 (2007).CrossRefGoogle Scholar
  31. 31.
    J. C. Hill and N. W. Driscoll, “Iceberg discharge to the Chukchi shelf during the Younger Drays,” Quat. Res. 74(1), 57–62 (2010).CrossRefGoogle Scholar
  32. 32.
    D. S. Kaufman, T. A. Ager, N. J. Anderson, et al., “Holocene thermal maximum in the western Arctic (0–180° W),” Quat. Sci. Rev. 23(5–6), 529–560 (2004).CrossRefGoogle Scholar
  33. 33.
    L. D. Keigwin, J. P. Donnelly, M. S. Cook, et al., “Rapid sea-level rise and Holocene climate in the Chukchi Sea,” Geology 34(10), 861–864 (2006).CrossRefGoogle Scholar
  34. 34.
    A. V. Lozhkin, P. M. Anderson, S. L. Vartanyan, et al., “Late Quaternary paleoenvironments and modern pollen data from Wrangel Island (Northern Chukotka).” Quat. Sci. Rev. 20(1–3), 217–233 (2001).CrossRefGoogle Scholar
  35. 35.
    J. Matthiessen, A. de Vernal, M. Head, et al., “Modern organic-walled dinoflagellate cysts in Arctic marine environments and their (paleo-) environmental significance,” Palaeontol. Zietschrift 79(1), 3–51 (2005).CrossRefGoogle Scholar
  36. 36.
    J. Matthiessen, M. Kunz-Pirrung, and P. J. Mudie, “Freshwater chlorophycean algae in recent marine sediments of the Beaufort, Laptev and Kara Seas (Arctic Ocean) as indicators of river runoff,” Int. J. Earth Sci. 89(3), 470–485 (2000).CrossRefGoogle Scholar
  37. 37.
    G. H. Miller, J. Brigham-Grette, R. B. Alley, et al., “Temperature and precipitation history of the Arctic,” Quat. Sci. Rev. 29(15–16), 1679–1715 (2010).CrossRefGoogle Scholar
  38. 38.
    P. J. Mudie, “Circum Arctic Quaternary and Neogene marine palynofloras: paleoecology and statistical analysis,” in Neogene and Quaternary Dinoflagellate Cysts and Acritarchs, Ed. by M. Head and J. H. Wrenn (Am. Assoc. Stratigraph. Palynol. Found., Dallas, 1992), pp. 347–390.Google Scholar
  39. 39.
    R. L. Phillips and M. W. Colgan, “Vibracore stratigraphy of the northeastern Chukchi Sea,” in Geological Studies in Alaska by the U.S. Geological Survey N. 998 during 1986, Ed. by T. D. Hamilton and J. P. Galloway, 157–160 (1987).Google Scholar
  40. 40.
    T. Radi and A. de Vernal, “Dinocyst distribution in surface sediments from the northeastern Pacific margin (40–60° N) in relation to hydrographic conditions, productivity and upwelling,” Rev. Paleobot. Palynol. 128(1–2), 169–193 (2004).CrossRefGoogle Scholar
  41. 41.
    T. Radi, A. de Vernal, and O. Peyron, “Relationships between dinoflagellate cyst assemblages in surface sediment and hydrographic conditions in the Bering and Chukchi seas,” J. Quat. Sci. 16(7), 667–680 (2001).CrossRefGoogle Scholar
  42. 42.
    D. E. Smith, S. Harrison, C. R. Firth, and J. T. Jordan, “The early Holocene sea level rise,” Quat. Sci. Rev. 30(15–16), 1846–1860 (2011).CrossRefGoogle Scholar
  43. 43.
    R. Stein, C. J. Schubert, R. W. Macdonald, et al., “The central Arctic Ocean: Distribution, sources, variability and burial of organic carbon,” in The Organic Carbon Cycle in the Arctic Ocean, Ed. by R. Stein and R. W. Macdonald (Springer, New York, 2004), pp. 295–314.CrossRefGoogle Scholar
  44. 44.
    A. Stepanova, E. Taldenkova, Simstich J., et al., “Comparison study of the modern ostracod associations in the Kara and Laptev seas: ecological aspects,” Mar. Micropaleontol. 63(3–4), 111–142 (2007).CrossRefGoogle Scholar
  45. 45.
    A. Stepanova, E. Taldenkova, and H. A. Bauch, “Ostracod palaeoecology and environmental change in the Laptev and Kara seas (Siberian Arctic) during the last 18 000 years,” Boreas 41(4), 557–577 (2012).CrossRefGoogle Scholar
  46. 46.
    E. Taldenkova, H. A. Bauch, A. Stepanova, et al., “Last postglacial environmental evolution of the Laptev Sea shelf as reflected in molluscan, ostracodal, and foraminiferal faunas,” Global Planet. Change 48(1–3), 223–251 (2005).CrossRefGoogle Scholar
  47. 47.
    M. J. C. Walker, M. Berkelhammer, S. Björck, et al., “Formal subdivision of the Holocene series/epoch: a discussion paper by a working group of INTIMATE (integration of ice-core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy (International Commission on Stratigraphy),” J. Quat. Sci. 27(7), 649–659 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • E. A. Gusev
    • 1
  • N. Yu. Anikina
    • 2
  • L. G. Derevyanko
    • 2
  • T. S. Klyuvitkina
    • 3
  • L. V. Polyak
    • 4
  • E. I. Polyakova
    • 3
  • P. V. Rekant
    • 1
  • A. Yu. Stepanova
    • 5
  1. 1.All-Russian Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeangeologiya)St. PetersburgRussia
  2. 2.Central Geological-Prospecting LaboratorySyktyvkarRussia
  3. 3.Geographical DepartmentMoscow State UniversityMoscowRussia
  4. 4.University of OhioOhioUSA
  5. 5.Paleontological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations