, Volume 53, Issue 2, pp 211–222 | Cite as

Late quaternary oceanographic conditions in the Western Bering Sea

  • E. A. Ovsepyan
  • E. V. Ivanova
  • L. Max
  • J. -R. Riethdorf
  • D. Nürnberg
  • R. Tiedemann
Marine Geology


The benthic and planktonic foraminiferal assemblages and the distribution of coarse grain-size factions were studied in the upper 4.5 m of the Core SO201-2-85KL (57°30.30′ N, 170°24.79′ E, water depth 968 m) retrieved from the Shirshov Ridge. This part of the core covers 7.5 to 50 kyr BP. The glacial period is established to be characterized by low surface water productivity, the wide distribution of sea ice and/or icebergs in this area, and a high oxygen concentration in the bottom layer. Enhanced productivity is inferred from the maximum abundance of planktonic foraminifers at the very beginning of the deglaciation. The late Bølling-Allerød interstadial and the early Holocene were marked by the further two-phase increase in the surface productivity and the weakened ventilation of the bottom water.


Holocene Bottom Water Last Glacial Maximum Marine Isotopic Stage Benthic Foraminifer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Arsen’ev, Currents and Water Masses of the Bering Sea (Nauka, Moscow, 1967) [in Russian].Google Scholar
  2. 2.
    N. V. Bubenshchikova, D. Nürnberg, S. A. Gor- barenko, and L. Lembke-Jene, “Variations of the Oxygen Minimum Zone of the Okhotsk Sea during the Last 50 ka as Indicated by Benthic Foraminiferal and Biogeochemical Data,” Oceanology 50(1), 93–106 (2010).CrossRefGoogle Scholar
  3. 3.
    I. I. Burmistrova, M. P. Chekhovskaya, and N. V. Belyaeva, “Benthic Foraminifers in Eastern Slope of the Bering Seas,” Oceanology 44(5), 734–742 (2004).Google Scholar
  4. 4.
    S. A. Gorbarenko and E. L. Gol’dberg, “Assessment of Variations of Primary Production in the Sea of Okhotsk, Bering Sea, and Northwestern Pacific over the Last Glaciation Maximum and Holocene,” Dokl. Earth Sci. 405A(9), 1380–1383 (2005).Google Scholar
  5. 5.
    A. P. Lisitsyn, Current Sedimentation Processes in the Bering Sea (Nauka, Moscow, 1966) [in Russian].Google Scholar
  6. 6.
    Kh. M. Saidova, Ecology of Foraminifers and Paleogeography of the Far East Seas of USSR and Northwestern Pacific (Akad. Nauk SSSR, Moscow, 1961) [in Russian].Google Scholar
  7. 7.
    T. A. Khusid, I. A. Basov, S. A. Gorbarenko, and M. P. Chekhovskaya, “Benthic Foraminifers in Upper Quaternary Sediments of the Southern Bering Sea: Distribution and Paleoceanographic Interpretations,” Stratigr. Geol. Correl. 14(5), 538–548 (2006).CrossRefGoogle Scholar
  8. 8.
    M. P. Chekhovskaya, I. A. Basov, A. G. Matul, T. A. Khusid, and S. A. Gorbarenko, “Planktonic Foraminifers in the Southern Bering Sea: Changes in Composition and Productivity during the Late Pleistocene — Holocene,” Stratigr. Geol. Correl. 16(3), 328–342 (2008).CrossRefGoogle Scholar
  9. 9.
    G. R. Bigg, C. D. Clark, and A. L. C. Hughes, “A Last Glacial Ice Sheet on the Pacific Russian Coast and Catastrophic Change Arising from Coupled Ice-Volcanic Interaction,” Earth Planet. Sci. Lett. 265, 559–570 (2008).CrossRefGoogle Scholar
  10. 10.
    B. E. Caissie, J. Brigham-Grette, K. T. Lawrence, et al., “Last Glacial Maximum to Holocene Sea Surface Conditions at Umnak Plateau, Bering Sea, as Inferred from Diatom, Alkenone, and Stable Isotope Records,” Paleoceanography 25, PA1206 (2010). doi 10.10.1029/2008PA001671.CrossRefGoogle Scholar
  11. 11.
    R. Chen, Y. Meng, R. Wang, D. Hua, and J. Xu, “Oceanographic Records of Microorganisms in the Surface Sediments from the Bering and Chukchi Seas,” Asian J. Water, Environ. Pollut. 2(1), 19–26 (2005).Google Scholar
  12. 12.
    M. S. Cook, L. D. Keigwin, and C. A. Sancetta, “The Deglacial History of Surface and Intermediate Water of the Bering Sea,” Deep-Sea Res., Part II 52, 2163–2173 (2005).CrossRefGoogle Scholar
  13. 13.
    K. F. Darling and C. M. Wade, “The Genetic Diversity of Planktic Foraminifera and the Global Distribution of Ribosomal RNA Genotypes,” Marine Micropaleontology 67, 216–238 (2008).CrossRefGoogle Scholar
  14. 14.
    SO201-KALMAR Leg 2 Cruise Report No. 35, Ed. by W.-C. Dullo, B. Baranov, and C. van den Bogaard (IFM-GEOMAR, Germany, 2009).Google Scholar
  15. 15.
    H. Gebhardt, M. Sarnthein, P. M. Grootes, et al., “Paleonutrient and Productivity Records from the Subarctic North Pacific for Pleistocene Glacial Terminations I to V,” Paleoceanography 23, PA4212 (2008). doi 10.1029/2007PA001513.CrossRefGoogle Scholar
  16. 16.
    S. A. Gorbarenko, “Stable Isotope and Lithological Evidence of Late-Glacial and Holocene Oceanography of the Northwestern Pacific and Its Marginal Seas,” Quaternary Res. 46, 230–250 (1996).CrossRefGoogle Scholar
  17. 17.
    S. A. Gorbarenko, I. A. Basov, M. P. Chekhovskaya, et al., “Orbital and Millennium Scale Environmental Changes in the Southern Bering Sea during the Last Glacial-Holocene: Geochemical and Paleontological Evidence,” Deep-Sea Res., Part II 52, 2174–2185 (2005).CrossRefGoogle Scholar
  18. 18.
    S. A. Gorbarenko, P. Wang, R. Wang, and X. Cheng, “Orbital and Suborbital Environmental Changes in the Southern Bering Sea during the Last 50 kyr,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 286, 97–106 (2010).CrossRefGoogle Scholar
  19. 19.
    M. Hald, C. Andersson, H. Ebbesen, et al., “Variations in Temperature and Extent of Atlantic Water in the Northern North Atlantic during the Holocene,” Quat. Sci. Rev. 26, 3423–3440 (2007).CrossRefGoogle Scholar
  20. 20.
    J. C. Herguera, T. Herbert, M. Kashgarian, and C. Charles, “Intermediate and Deep Water Mass Distribution in the Pacific during the Last Glacial Maximum Inferred from Oxygen and Carbon Stable Isotopes,” Quat. Sci. Rev. 29, 1228–1245 (2010).CrossRefGoogle Scholar
  21. 21.
    J. Imbrie and N. G. Kipp, “A New Micropaleontological Method for Quantitative Paleoclimatology: Application for a Late Pleistocene Caribbean Core,” in The Late Cenozoic Glacial Ages, Ed. by K. Turikian (Yale Univ. Press, New Haven, 1971), pp. 71–181.Google Scholar
  22. 22.
    S. L. Jaccard, G. H. Haug, D. M. Sigman, et al., “Glacial/Interglacial Changes in Subarctic North Pacific Stratification,” Science 308, 1003–1006 (2005).CrossRefGoogle Scholar
  23. 23.
    F. J. Jorissen, C. Fontanier, and E. Thomas, “Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics,” in Proxies in Late Cenozoic Paleoceanography, Part 2: Biological Tracers and Biomarkers, Ed. by C. Hillaire-Marcel and A. de Vernal (Elsevier, Amsterdam, 2007), pp. 263–325.CrossRefGoogle Scholar
  24. 24.
    K. Kaiho, “Benthic Foraminiferal Dissolved-Oxygen Index and Dissolved-Oxygen Levels in the Modern Ocean,” Geology 22, 719–722 (1994).CrossRefGoogle Scholar
  25. 25.
    K. Katsuki and K. Takahashi, “Diatoms as Paleoenvironmental Proxies for Seasonal Productivity, Sea-Ice and Surface Circulation in the Bering Sea during the Late Quaternary,” Deep-Sea Res., Part II 52, 2110–2130 (2005).CrossRefGoogle Scholar
  26. 26.
    S. Kim, B. K. Khim, M. Uchida, et al., “Millennial-Scale Paleoceanographic Events and Implication for the Intermediate-Water Ventilation in the Northern Slope Area of the Bering Sea during the Last 71 Kyrs,” Global and Planetary Change 79, 89–98 (2011).CrossRefGoogle Scholar
  27. 27.
    K. Kohfeld and Z. Chase, “Controls on Deglacial Changes in Biogenic Fluxes in the North Pacific Ocean,” Quat. Sci. Rev. 30, 3350–3363 (2011).CrossRefGoogle Scholar
  28. 28.
    K. E. Kohfeld and R. G. Fairbanks, “Neogloboquadrina pachyderma (Sinistral Coiling) as Paleoceanographic Tracers in Polar Oceans: Evidence from Northeast Water Polynya Plankton Tows, Sediment Traps, and Surface Sediments,” Paleoceanography 11(6), 679–699 (1996).CrossRefGoogle Scholar
  29. 29.
    S. A. Korsun and M. Hald, “Modern Benthic Foraminifera off Novaya Zemlya Tidewater Glaciers, Russian Arctic,” Arct. Alp. Res. 30(1), 61–77 (1998).CrossRefGoogle Scholar
  30. 30.
    V. Luchin, V. Menovshchikov, and V. E. Lavrentiev, “Thermohaline Structure and Water Masses in the Bering Sea,” in Dynamics of the Bering Sea, Ed. by T. R. Loughlin and K. Ohtani (Univ. of Alaska Sea Grant, Fairbanks, 1999), pp. 61–91.Google Scholar
  31. 31.
    L. Max, J.-R. Riethdorf, R. Tiedemann, et al., “Sea Surface Temperature Variability and Sea-Ice Extend in the Subarctic Northwest Pacific during the Past 15 000 Years,” Paleoceanography 27, PA3213 (2012). doi 10.1029/2012PA002292.CrossRefGoogle Scholar
  32. 32.
    Y. Okazaki, A. Timmermann, L. Menviel, et al., “Deepwater Formation in the North Pacific during the Last Glacial Termination,” Science 329, 200–204 (2010).CrossRefGoogle Scholar
  33. 33.
    J. D. Ortiz, A. C. Mix, and R. W. Collier, “Environmental Control of Living Symbiotic and Asymbiotic Foraminifera of the California Current,” Paleoceanography 10(6), 987–1009 (1995).CrossRefGoogle Scholar
  34. 34.
    J.-R. Riethdorf, L. Max, D. Nürnberg, and R. Tiedemann, “Late Pleistocene to Holocene Changes in Sea Surface Temperature, Marine Productivity and Terrigenous Fluxes in the Western Bering Sea,” in Abstracts of the KALMAR Workshop (Trier, Germany, 2011), pp. 105–107.Google Scholar
  35. 35.
    G. I. Roden, “Flow and Water Property Structures between the Bering Sea and Fiji in the Summer of 1993,” J. Geophys. Res. 105(C12), 28595–28612 (2000).CrossRefGoogle Scholar
  36. 36.
    B. K. Sen Gupta and M. L. Machain-Castillo, “Benthic Foraminifera in Oxygen-Poor Habitats,” Marine Micropaleontology 20, 83–201 (1993).Google Scholar
  37. 37.
    A. M. Springer, C. P. McRoy, and M. V. Flint, “The Bering Sea Green Belt: Shelf-Edge Processes and Ecosystem Production,” Fisheries Oceanography 5(3/4), 205–223 (1996).CrossRefGoogle Scholar
  38. 38.
    P. J. Stabeno, J. D. Schumacher, and K. Ohtani, “The Physical Oceanography of the Bering Sea,” in Dynamics of the Bering Sea, Ed. by T. R. Loughlin and K. Ohtani, (Univ. of Alaska Sea Grant, Fairbanks, 1999), pp. 1–21.Google Scholar
  39. 39.
    R. Stein, Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment (Elsevier, Amsterdam, 2008).Google Scholar
  40. 40.
    K. E. K. John, St. and L. A. Krissek, “Regional Patterns of Pleistocene Ice-Rafted Debris Flux in the North Pacific,” Paleoceanography 14, 653–662 (1999).CrossRefGoogle Scholar
  41. 41.
    E. Thomas, E. Booth, M. Maslin, and N. J. Shackleton, “Northeastern Atlantic Benthic Foraminifers during the Last 45 000 Years: Changes in Productivity Seen from the Bottom Up,” Paleoceanography 10, 545–562 (1995).CrossRefGoogle Scholar
  42. 42.
    J. Zhang, R. Woodgate, and R. Moritz, “Sea Ice Response to Atmospheric and Oceanic Forcing in the Bering Sea,” J. Phys. Oceanogr., No. 40, 1729–1747 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. A. Ovsepyan
    • 1
  • E. V. Ivanova
    • 1
  • L. Max
    • 2
  • J. -R. Riethdorf
    • 3
  • D. Nürnberg
    • 3
  • R. Tiedemann
    • 2
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  3. 3.GEOMAR Helmholtz Centre for Ocean Research (Kiel)KielGermany

Personalised recommendations