Oceanology

, Volume 52, Issue 2, pp 171–180 | Cite as

Detection of Mediterranean lenses in the Atlantic ocean by profilers of the Argo project

  • A. N. Demidov
  • B. N. Filyushkin
  • N. G. Kozhelupova
Marine Physics

Abstract

We executed investigations of Mediterranean lenses detection in the Atlantic using data recorded by buoys-profilers of the “Argo” project (more than 11200 profiles). We investigate the region from 28° to 47° N and from 7° to 27° W for the period from 2001 to 2010. From these data, we revealed “lenses profiles” with the salinity values exceeding 36 psu (2043 cases). We demonstrate the allocation of Argo buoys in the area investigated and indicate their working periods; we also show the periodicity of the “lenses profiles.” It was found out that the Argo buoys traced individual lenses and depicted correctly their movements, the vertical scale of the eddy, its location in the depth, and the hydrological peculiarities of the lenses. We estimated the number of lenses occurring in different periods and analyzed the interaction of the Argo buoy with the intrathermocline lenses. The importance of these investigations for studying the Mediterranean water dynamics was pointed out.

References

  1. 1.
    Yu. A. Ivanov and V. G. Kort, “The Mezopoligon Program,” in Hydrophysical Research under the Mezopoligon Program, Ed. by V. G. Kort (Nauka, Moscow, 1988), pp. 3–9 [in Russian].Google Scholar
  2. 2.
    M. N. Koshlyakov, N. A. Maksimenko, and M. I. Yaremchuk, “The Kinematic Structure of the Lens of Mediterranean Water in the Tropical Atlantic,” in Hydrophysical Research under the Mezopoligon Program, Ed. by V. G. Kort (Nauka, Moscow, 1988), pp. 76–82 [in Russian].Google Scholar
  3. 3.
  4. 4.
    B. N. Filyushkin and E. A. Plakhin, “Experimental Studies of the Initial Stage of Formation of the Lens of Mediterranean Water,” Okeanologiya 35(6), 875–882 (1995).Google Scholar
  5. 5.
    B. N. Filyushkin, D. L. Aleinik, A. N. Demidov, et al., “Features of Formation and Distribution of Mediterranean Water Masses at Intermediate Depths of the Atlantic Ocean,” in Water Masses of Oceans and Seas (on the 100th Anniversary of A.D. Dobrovol’skii) (Maks Press, Moscow, 2007), pp. 92–129 [in Russian].Google Scholar
  6. 6.
    B. N. Filyushkin, D. L. Aleinik, N. G. Kozhelupova, and S. N. Moshonkin, “Features of Horizontal Transfer of the Mediterranean Waters in the Atlantic Ocean,” Issled. Okeanov Morei. Trudy GOIN, No. 212, 76–88 (2009).Google Scholar
  7. 7.
    B. N. Filyushkin, M. A. Sokolovskii, N. G. Kozhelupova, and I. M. Vagina, “Reflection of Intrathermocline Eddies on the Ocean Surface,” Dokl. Earth Sci. 439(1), 986–989 (2011).CrossRefGoogle Scholar
  8. 8.
    B. N. Filyushkin, M. A. Sokolovskii, N. G. Kozhelupova, and I. M. Vagina, “Evolution of Intrathermocline Eddies Moving over a Submarine Hill,” Dokl. Ross. Akad. Nauk 441(2) 1757–1760 (2011).Google Scholar
  9. 9.
    I. Ambar, “A Shallow Core of Mediterranean Water Off Western Portugal,” Deep-Sea Res. 30A(6), 677–680 (1983).CrossRefGoogle Scholar
  10. 10.
    X. Carton, L. Cherubin, J. Pallet, et al., “Meddy Coupling with a Deep Cyclone in the Gulf of Cadiz,” J. Marine Syst. 32, 13–42 (2002).CrossRefGoogle Scholar
  11. 11.
    X. Carton, N. Daniault, J. Alves, et al., “Meddy Dynamics and Interaction with Neighboring Eddies Southwest of Portugal: Observations and Modeling,” J. Geophys. Res. 115, C06017. doi: 10.1029/2009JC005646Google Scholar
  12. 12.
    V. O. Ivchenko, N. C. Wells, and D. L. Aleynik, “Anomaly of Heat Content in the Northern Atlantic in the Last 7 Years: Is the Ocean Warming or Cooling?,” Geophys. Res. Lett. 33(1), 22606 (2006). doi: 10.1029/2006glo27691CrossRefGoogle Scholar
  13. 13.
    A. G. Kostianoy and G. M. Belkin, “A Survey of Observations on Intrathermocline Eddies in the World Ocean,” in Mesoscale/Synoptic Coherent Structure in Geophysical Turbulence. Proc. of the 20th Int. Liege Colloq. on Ocean Hydrodynamic, Ed. by J. C. J. Nihoul and B. M. Jamaat (Elsevier, 1989), pp. 821–841.Google Scholar
  14. 14.
    F. Madelain, “Influence de la Topographie du Fond sur l’Ecoulement Mediterranean entre le Detroit de Gibraltar et le Cap Sant-Vincent,” Cahiers Oceanogr. XII Annee, No. 1, 43–62 (1970).Google Scholar
  15. 15.
    J. Paillet, B. Le Cann, A. Serpette, et al., “Real-Time Tracking of a Northern Meddy in 1998–1999,” Geophys. Rev. Lett. 26, 1877–1880 (1999).CrossRefGoogle Scholar
  16. 16.
    P. L. Richardson, M. S. McCartney, and C. Maillard, “A Search for Meddies in Historical Data,” Dyn. Atmos. Oceans 15, 241–265 (1991).CrossRefGoogle Scholar
  17. 17.
    P. L. Richardson, J. F. Price, D. Walsh, et al., “Tracking Three Meddies with SOFAR Floats,” J. Phys. Oceanogr. 19(3), 371–383 (1989).CrossRefGoogle Scholar
  18. 18.
    M. A. Spall, P. L. Richardson, and J. Price, “Advection and Eddy Mixing in the Mediterranean Salt Tongue,” J. Mar. Res. 51(4), 797–818 (1993).CrossRefGoogle Scholar
  19. 19.
    D. Stammer, H.-H. Hinrichsen, and R. H. Käse, “Can Meddies Be Detected by Satellite Altimetry?,” J. Geophys. Res. 96(0) (1991).Google Scholar
  20. 20.
    J. G. Swallow, “A Deep Eddy Off Cape St. Vincent,” Deep-Sea Res. 16, 285–295 (1969).Google Scholar
  21. 21.
    World Ocean Database 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. N. Demidov
    • 1
    • 2
  • B. N. Filyushkin
    • 2
  • N. G. Kozhelupova
    • 2
  1. 1.Faculty of GeographyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations