Advertisement

Oceanology

, 51:804 | Cite as

Morpho-functional characteristics of bivalve mollusks under the experimental environmental pollution by heavy metals

  • G. A. KolyuchkinaEmail author
  • A. D. Ismailov
Marine Biology

Abstract

The effects of a week-long exposure to copper sulfate (0.05–5000 mg/l) and cadmium chloride (2 and 10 mg/l) upon the morpho-functional characteristics of the Black Sea bivalve mollusks Anadara cf. inaequivalvis and Chamelea gallina were studied. The changes in the morpho-functional state of mollusks at the impact of these metals are distinguished. These changes included a 60% decrease in the hemocytes’ concentration in the hemolymph and a 5- to 7-fold decline of the hemocyte adenosine triphosphate (ATP) content, along with the appearance in the mollusks of “brown” cells and lipofuscin-like pigment. The exposure to both metals caused similar changes.

Keywords

Bivalve Mollusk Digestive Gland Hemocyte Mytilus Edulis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kutsenko, S.A., Osnovy toksikologii (Principles of Toxicology), St. Petersburg: Foliant, 2002.Google Scholar
  2. 2.
    Kucheruk, N.V., Basin, A.B., Kotov, A.V., and Chikina, M.V., Macrozoobenthos of Loose Bottom Soils of North Caucasian Coast of the Black Sea: Long-Term Dynamics of Community, in Kompleksnye issledovaniya severo-vostochnoi chasti Chernogo morya (Complex Investigation of the Northwest of the Black Sea), Zatsepin, A.G. and Flint, M.V., Eds., Moscow: Nauka, 2002, pp. 289–297.Google Scholar
  3. 3.
    Leibson, N.L. and Ushev, L.N., Morphological-Functional Characteristic of Digestive Gland in Bivalve Mollusks, in Tsitologicheskie issledovaniya morskikh organismov (Cytological Investigations of Marine Organisms), Vladivostok: IBM DVO AN SSSR, 1979, pp. 5–45.Google Scholar
  4. 4.
    Lenindzher, A., Biokhimiya. Molekulyarnye osnovy struktury i funktsii kletki (Biochemistry. Molecular Basis of Structure and Functions of a Cell), Moscow: Mir, 1974.Google Scholar
  5. 5.
    Avtsyn, A.P., Zhavoronkov, A.A., Rish, M.A., and Strochkova, L.S., Mikroelementosy cheloveka: etiologiya, klassifikatsiya, organopatologiya (Human Microelementosis: Etiology, Classification and Organopathology), Moscow: Meditsina, 1991.Google Scholar
  6. 6.
    Nikiforova, T.E., Bezopasnost’ prodovol’stvennogo syr’ya i produktov pitaniya. Uchebnoe posobie (Safety of Food Stuff and Food Products, Study Book), Ivanovo: Gos. Khim.-Tekhnol. Univ., 2007.Google Scholar
  7. 7.
    Usheva, L.N., Histopathology of Adductor in Yesso Scallop Mizuhopecten yessoensis from Polluted Areas in the Peter the Great Gulf in the Sea of Japan, Biologiya Morya, 1999, vol. 25, no. 5, pp. 383–388.Google Scholar
  8. 8.
    Usheva, L.N., Vashchenko, M.A., and Durkina, V.B., Histopathology of Digestive Gland in Bivalve Mollusk Crenomytilus grayanus (Dunker, 1853) from Southwestern Part of the Peter the Great Gulf from the Sea of Japan, Biologiya Morya, 2006, vol. 32, no. 3, pp. 197–203.Google Scholar
  9. 9.
    Fedorov, A.V., Autoradiographic Investigation of Proliferative Activity of Amebocytes Dreissena polymorpha during Experimental Inflammation, in XI Mezhdunarodnaya Nauchnaya konferentsiya studentov, aspirantov i molodykh uchenykh “Lomonosov-2004” (XI International Scientific Conference of Students, Aspirants and Young Scientists “Lomonosov-2004”), Moscow: MGU, 2004, pp. 68–69.Google Scholar
  10. 10.
    Chikina, M.V., Kolyuchkina, G.A., and Kucheruk, N.V., Biological Aspects of Reproduction of Scapharca inaequivalvis (Bruguière) (Bivalvia; Arcidae) in the Black Sea, Ekologiya Morya, 2003, no. 64, pp. 72–77.Google Scholar
  11. 11.
    Bigas, M., Amiard-Triquet, C., Dufort, M., and Poquet, M. Sub-lethal Effects of Experimental Exposure to Mercury in European Flat Oyster Ostrea edulis: Cell Alterations and Quantitative Analysis of Metal, Biometals, 1997, vol. 10, no. 4, pp. 277–284.CrossRefGoogle Scholar
  12. 12.
    Brousseau, M.E., Eberhart, G.P., Dupuis, J., et al., Cellular Cholesterol Efflux in Heterozygotes for Tangier Disease is Markedly Reduced and Correlates with High Density Lipoprotein Cholesterol Concentration and Particle Size, J. Lipid Res., 2000, vol. 41, pp. 1125–1135.Google Scholar
  13. 13.
    Bunger Rolf, Professor of Physiology, Oral Presentation, 2008.Google Scholar
  14. 14.
    Byrne, P.A. and O’Halloran, J., Acute and Sub-lethal Toxicity of Estuarine Sediments to the Manila Clam Tapes semiducussatus, J. Environmental Toxicology, 2000, vol. 15, pp. 456–512.CrossRefGoogle Scholar
  15. 15.
    Byrne, P.A. and O’Halloran, J., The Use of Manila clam Tapes semidecussatus and Scrobicularia plana in Sediment Toxicity Testing: a Review, in Coastal Shellfish: a Sustainable Resource, Netherlands: Kluwer Academic Publications, 2001, pp. 209–217.CrossRefGoogle Scholar
  16. 16.
    Carballal, M.J., López, M.C., Azevedo, C., and Villalba, A., Hemolymph Cell Types of the Mussel Mytilus galloprovincialis, Dis. Aquat. Org., 1997, vol. 29, no. 2, pp. 127–135.CrossRefGoogle Scholar
  17. 17.
    Carroll, J.L. and Wells, R.M., Strategies of Anaerobiosis in New Zealand Infaunal Bivalves: Adaptations to Environmental and Functional Hypoxia, New Zealand Journal of Marine and Freshwater Research, 1995, vol. 29, pp. 137–146.CrossRefGoogle Scholar
  18. 18.
    Chikina, M.V. and Kucheruk, N.V., Changes in the Species Structure of the Black Sea Coastal Benthic Communities, in Oceanography of the Eastern Mediterranean and Black Sea, Yilmaz, A. and Erdemli-Içel, Eds., Turkey: IMS METU, 2003, pp. 897–901.Google Scholar
  19. 19.
    Chikina, M.V. and Kucheruk, N.V., Long-Term Changes in the Structure of Coastal Benthic Communities in the Northeastern Part of the Black Sea: Influence of Alien Species, Oceanology, 2005, vol. 45, pp. S176–S182.Google Scholar
  20. 20.
    Coombe, D.R., Ev, P.L., and Jenkin, C.R., Self/Nonself Recognition in Invertebrates, Quarterly Review of Biology, 1984, vol. 59, pp. 231–255.CrossRefGoogle Scholar
  21. 21.
    De Zwaan, A. and Wijsmann, T.C.M., Anaerobic Metabolism in Bivalvia (Mollusca): Characteristics of Anaerobic Metabolism, Comp. Biochem. Physiol., 1976, vol. 43A, pp. 53–58.Google Scholar
  22. 22.
    Díaz-Enrich, M. J., Ramos-Martínez, J. I., and Ibarguren, I., Implication of Guanosine 3′,5’-Cyclic Monophosphate, Adenosine 3′,5′-Cyclic Monophosphate, Adenosine 5′-mono-, Di- and Triphosphate and Fructose-2.6-Bisphosphate in the Regulation of the Glycolytic Pathway in Hypoxic/Anoxic Mussel, Mytilus galloprovincialis, Molecular and Cellular Biochemistry, 2002, vol. 240, pp. 111–118.CrossRefGoogle Scholar
  23. 23.
    Dopp, E., Barker, C.M., Schiffmann, D., and Reinisch, C.L., Detection of Micronuclei in Hemocytes of Mya arenaria: Association with Leukemia and Induction With an Alkalating Agent, Aquatic Toxicology, 1996, vol. 34, pp. 31–45.CrossRefGoogle Scholar
  24. 24.
    Dyrynda, E.A., Law, R.J., Dyrynda, P.E.J., et al., Changes in Immune Parameters of Natural Mussel Mytilus edulis Populations Following a Major Oil Spill (’sea Empress’, Wales, UK), Mar. Ecol. Prog. Ser., 2000, vol. 206, pp. 155–170.CrossRefGoogle Scholar
  25. 25.
    Ford, S.E., Kanaley, S.S., and Littlewood, D.T. J., Cellular Response of Oyster Infected with Haplosporidium nelsoni, Changes in Circulating and Tissue-Infiltrating Hemocytes, J. Invert. Pathol., 1993, no. 61, pp. 49–57.Google Scholar
  26. 26.
    Goldberg, E.D., Bowen, V.T., Farrington, J.W., et al., The Mussel Watch, Environ. Conserv., 1978, vol. 5, pp. 101–125.CrossRefGoogle Scholar
  27. 27.
    Goldberg, E.D., Koide, M., Hodge, V., et al., U.S. Mussel Watch: 1977–1978 Results on Trace Metals and Radionuclides, Estuar. Coast Shelf Sci., 1983, no. 16, pp. 69–93.Google Scholar
  28. 28.
    Hand, S.C. and Hardewig, I., Down Regulation of Cellular Metabolism during Environmental Stress: Mechanisms and Implications, ANIU Rev. Physid., 1996, vol. 58, pp. 539–63.CrossRefGoogle Scholar
  29. 29.
    Karl, D.M. and Nealson, K.H., Regulation of Cellular Metabolism during Synthesis and Expression of the Luminous System in Benekea and Photobacterium, Journal of General Microbiology, 1980, no. 117, pp. 357–368.Google Scholar
  30. 30.
    Kidder, G.M., Pollutant Levels in Bivalves—A Data Bibliography, Report, EPA contract R-80421501, Scripps Institute of Oceanography, La Jolla, Canada, 1977.Google Scholar
  31. 31.
    Langton, R.W., Synchrony in the Digestive Diverticula of Mytilus edulis L., J. Mar. Biol. Ass U.K., 1975, no. 55, pp. 221–223.Google Scholar
  32. 32.
    Lowe, D.V., Alteration in Cellular Structure of Mytilus edulis Resulting from Exposure to Environmental Contaminants Under Field and Experimental Conditions, Mar. Ecol. Prog. Ser., 1988, vol. 46, pp. 91–100.CrossRefGoogle Scholar
  33. 33.
    De Luca-Abbott, S., Biomarkers of Sub-lethal Stress in the Soft-Sediment Bivalve Austrovenus ststchburyi Exposed In-Situ to Contaminated Sediment in an Urban New Zealand Harbor, Mar. Pollut. Bull., 2001, vol. 42, no. 10, pp. 817–825.CrossRefGoogle Scholar
  34. 34.
    Martin, M., State Mussel Watch: Toxic Surveillance in California, Mar. Pollut. Bull., 1985, no. 16, pp. 140–146.Google Scholar
  35. 35.
    Mathieu, M., Etude Experimentale du Controle Neuroendocrinen des Cycles de Development de la Gonade et du Tissue de Reserve Chez la Moule Adulte Mytilus edulis L. (Mollusque Lamellibranche): Extended Abstract of Doctoral Sci., France: Univ. Caen, 1979, p. 337.Google Scholar
  36. 36.
    Mondovi, B., Rotilio, G., Costa, M.T., et al., Diamine Oxidase from Pig Kidney. Improved Purification and Properties, J. Biol. Chem., 1967, no. 242, pp. 1160–1167.Google Scholar
  37. 37.
    Nicholson, S. and Lam, P.K.S., Pollution Monitoring in Southeast Asia Using Biomarkers in the Mytilid mussel Perna viridis (Mytilidae: Bivalvia), Environment International, 2005, vol. 31, pp. 121–132.CrossRefGoogle Scholar
  38. 38.
    Oliver, L.M., Fisher, W.S., Winstead, J.T., et al., Relationships between Tissue Contaminants and Defense-Related Characteristics of Oysters (Crassostrea virginica) from Five Florida Bays, Aquat. Toxicol., 2001, no. 55, pp. 203–222.Google Scholar
  39. 39.
    Owen, G., The Fine Structure of the Digestive Tubules of the Marine Bivalve, Cardium edule, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 1970, no. 258, pp. 245–260.Google Scholar
  40. 40.
    Owen, G., Lysosomes, Peroxisomes, and Bivalves, Sci. Prog., 1972, vol. 60, pp. 299–318.Google Scholar
  41. 41.
    Owen, G., Feeding and Digestion in the Bivalvia, Adv. Comp. Physiol. Biochem., 1974, vol. 5. pp. 1–35.Google Scholar
  42. 42.
    Patel, B. and Anthony, K., Uptake of Cadmium in Tropical Marine Lamellibranches, end Effects on Physiological Behavior, Marine Biology, 1991, vol. 108, no. 3, pp. 457–470.CrossRefGoogle Scholar
  43. 43.
    Patel, B. and Eapen, J.T., Biochemical Evaluation of Naphthalene Intoxication in the Tropical Acrid Blood Clam Anadara granosa, Marine Biology, 1989, vol. 103, no. 2, pp. 203–209.CrossRefGoogle Scholar
  44. 44.
    Peters, T.Jr. and Blumenstock, F.A., Copper-Binding Properties of Bovine Serum Albumin and Its Amino-Terminal Peptide Fragment, J. Biol. Chem., 1967, vol. 242, no. 7, pp. 1574–1578.Google Scholar
  45. 45.
    Phelps, D.K., Katz, C.H., Scott, B.J., and Reynolds, B.H., Coastal Monitoring: Evaluation of Monitoring Methods in Narragansett Bay, Long Island Sound, and New York Bight, and a General Monitoring Strategy, in New Approaches to Monitoring Aquatic Ecosystems, Boyle, T.P., Ed., Philadelphia: ASTM 940, 1986, p 18.Google Scholar
  46. 46.
    Pipe, R.K., Coles, J.A., Carissan, F.M.M., and Ramanathan, K., Copper Induced Immunomodulation in the Marine Mussel, Mytilus edulis, Aquatic Toxicology, 1999, vol. 46, pp. 43–54.CrossRefGoogle Scholar
  47. 47.
    Purchon, R.D., Digestion in Filter Feeding Bivalves: a New Concept, Proc. Malacol. Soc. Lond., 1971, vol. 39, pp. 253–262.Google Scholar
  48. 48.
    Ratcliff, N.A. and Rowley, A.F., A Comparative Synopsis of the Structure and Function of the Blood Cells of Insects and Other Invertebrates, Develop. and Comp. Immunol., 1979, vol. 3, no. 2, pp. 189–221.CrossRefGoogle Scholar
  49. 49.
    Robledo, Y., Madrid, J.F., Leis, O., and Cajaraville, M.P., Analysis of the Distribution of Glycoconjugates in the Digestive Gland of the Bivalve Mollusk Mytilus galloprovincialis by Conventional and Lectin Histochemistry, Cell and Tissue Research, 1997, vol. 288, no. 3, pp. 591–602.CrossRefGoogle Scholar
  50. 50.
    Sauvé, S., Brousseau, P., Pellerin, J., et al., Phagocytic Activity of Marine and Freshwater Bivalves: in Vitro Exposure of Hemocytes to Metals (Ag, Cd, Hg and Zn), Aquatic Toxicology, 2002, vol. 58, no. 3–4, pp. 189–200.CrossRefGoogle Scholar
  51. 51.
    Simkiss, K. and Mason, A.Z., Metal Ions: Metabolic and Toxic Effects, in The Mollusca, Hochachka, P.W., Ed., New York: Academic Press, 1983, pp. 101–164.Google Scholar
  52. 52.
    Sokolova, I.M., Bock, C., and Pörtner, H.-O., Resistance to Freshwater Exposure in White Sea Littorina spp. I: Anaerobic Metabolism and Energetics, J. Comp. Physiol. B., 2000, vol. 170, pp. 91–103.CrossRefGoogle Scholar
  53. 53.
    Sokolova, I.M. and Pörtner, H.O., Physiological Adaptations to High Intertidal Life Involve Improved Water Conservation Abilities and Metabolic Rate Depression in Littorina saxatilis, Mar. Ecol. Prog. Ser., 2001, vol. 224, pp. 171–186.CrossRefGoogle Scholar
  54. 54.
    Sokolova, I.M., Evans, S., and Hughes, F.M., Cadmium-Induced Apoptosis in Oyster Hemocytes Involves Disturbance of Cellular Energy Balance but No Mitochondrial Permeability Transition, J.Exp. Biol., 2004, vol. 207, pp. 3369–3380.CrossRefGoogle Scholar
  55. 55.
    Sokolova, I.M., Sokolov, E.P., and Ponnappa, K.M., Cadmium Exposure Affects Mitochondrial Bioenergetics and Gene Expression of Key Mitochondrial Proteins in the Eastern Oyster Crassostrea virginica Gmelin (Bivalvia: Ostreidae), Aq. Toxicol., 2005, vol. 73, pp. 242–255.CrossRefGoogle Scholar
  56. 56.
    Stephenson, M.D., Coale, S.L., Martin, M., et al., California Mussel Watch: 1980–1981 Trace Metal Concentrations in the Californian mussel, Mytilus californianus, Along the California Coast and Bays and Estuaries, in Water Quality Monitoring Report 81-11 TS, Surveillance and Monitoring Unit, State Water Resources Control Board, Sacramento, California, 1982, part 1, p. 89.Google Scholar
  57. 57.
    Sumner, A.T., The Distribution of Some Hydrolytic Enzymes in the Cells of the Digestive Gland of Certain Lamellibranchs and Gastropods, J. of Zoology, 1969, vol. 158, no. 3, pp. 277–291.CrossRefGoogle Scholar
  58. 58.
    Sunila, I., Copperand Cadmium-Induced Histological Changes in the Mantle of Mytilus edulis L. (Bivalvia), Limnologica, 1984, vol. 15, no. 2, pp. 523–527.Google Scholar
  59. 59.
    Sunila, I., Histopathology of Mussel (Mytilus edulis L.) from the Tvarminne Area, the Gulf of Finland (Baltic Sea), Ann. Zool. Fennici., 1987, vol. 24, pp. 55–69.Google Scholar
  60. 60.
    Suresh, K. and Mohandas, A., Number and Types of Hemocytes in Sunetta scripta and Villonta cyprinoides var. cochinensis (bivalvia), and Leukocytosis Subsequent to Bacterial Challenge, J. Invertebr. Pathol., 1990, vol. 55, pp. 312–318.CrossRefGoogle Scholar
  61. 61.
    Tay, S.L.A., Chew, S.F., and Ip, Y.K., The Swamp eel Monopterus albus Reduces Endogenous Ammonia Production and Detoxifies Ammonia to Glutamine during Aerial Exposure, J. Exp. Biol., 2003, vol. 206, pp. 2473–2386CrossRefGoogle Scholar
  62. 62.
    Thebault, M.T., Biegniewska, A., Raffin, J.P., and Skorkowski, E.F., Short-Term Cadmium Intoxication of the Shrimp Palaemon serratus: Effect on Adenylate Metabolism, Comp. Biochem. and Phys. C Pharm. Tox. and Endocrin., 1996, vol. 113, no. 3, pp. 345–348.Google Scholar
  63. 63.
    Vooys, C.G.N., de Zwaan, A., Roos, J., et al., Anaerobic Metabolism of Erythrocytes of the Arcid Clam Scapharca inaequivalvis (Bruguitre): Effects of Cadmium, Comp. Biochem. Physiol., 1991, vol. 98B, no. 1, pp. 169–175.Google Scholar
  64. 64.
    Weber, R.E., Lykke-Madsen, M., Bang, A., et al., Effects of Cadmium on Anoxic Survival, Haemotology, Erythrocytic Volume Regulation and Haemoglobin—Oxygen Affinity in the Marine Bivalve Scapharca inaequivalvis, J. Exp. Mar. Biol., 1990, vol. 144, pp. 29–38.CrossRefGoogle Scholar
  65. 65.
    Weber, R.E., de Zwaan, A., and Bang, A., Interactive Effect of Ambient Copper and Anoxic, Temperature and Salinity Stress on Survival and Hemolymph and Muscle Tissue Osmotic Effectors in Mytilus edulis, J. Exp. Mar. Biol. Ecol., 1992, vol. 159, pp. 135–156.CrossRefGoogle Scholar
  66. 66.
    Widdows, J. and Donkin, P., Mussels and Environmental Contaminants: Bioaccumulation and Physiological Aspects, in The Mussel Mytilus: Ecology, Physiology, Genetics and Culture, Gosling, E., Ed., Amsterdam: Elsevier, 1992, pp. 383–424.Google Scholar
  67. 67.
    Wright, D.A., Trace Metal and Major Ion Interactions in Aquatic Animals, Mar. Poll. Bull., vol. 31, pp. 1–3.Google Scholar
  68. 68.
    Zaroogian, G. and Jackim, E., In vivo Metallothionein and Glutathione Status in an Acute Response to Cadmium in Mercenaria mercenaria Brown Cells, Comp. Biochem. and Phys.: C Pharm. Toxi. and Endocrin., 2000, vol. 127, no. 3, pp. 251–261.Google Scholar
  69. 69.
    Zaroogian, G. and Norwood, C., Glutathione and Metallothionein Status in an Acute Response by Mercenaria mercenaria Brown Cells to Copper in vivo, Ecotoxicol. and Env. Safety, 2002, vol. 53, no. 2, pp. 285–292.CrossRefGoogle Scholar
  70. 70.
    Zaroogian, G., Yevich, P., and Anderson, S., Effect of Selected Inhibitors on Cadmium, Nickel, and Benzo(a)pyrene Uptake into Brown Cells of Mercenaria mercenaria, Mari. Env. Res., 1993, vol. 35, nos. 1–2, pp. 41–45.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Biological FacultyMoscow State UniversityMoscowRussia

Personalised recommendations