Oceanology

, Volume 49, Issue 3, pp 385–395 | Cite as

Response of oceanic organisms to abiotic events in the Paleogene

Marine Geology

Abstract

Climate fluctuations with the optimum in the Early Eocene and subsequent cooling were the main abiotic factor that controlled the development of the oceanic biota in the Paleogene. The Paleogene represented the transitional stage from the greenhouse climate of the Mesozoic to the partly glacial Neogene and was characterized by changes in the distribution of the temperatures in the ocean with the replacement of the dominant latitudinal thermal circulation by the largely meridional thermohaline one. The climate changes were also determined by other factors: the opening and closure of seaways between basins, the position of major currents, volcanic activity, the sea-level fluctuations, the composition of the hydro- and atmosphere, and others. These changes were, in turn, determined by factors of higher order, primarily, by tectonic movements: vertical and horizontal (motions of lithospheric plates). The contribution of impact events to this process is also highly probable. All these factors influenced, via the hydrological and hydrochemical parameters of the water column, the evolution of the oceanic biota: their distribution areas, the sizes of the organisms, the diversity of the communities, the bioproductivity, and the mass extinction (for example, the extinction of 30–50% of the benthic foraminifers at the Paleocene-Eocene transition in response to the abrupt temperature increase). The Eocene-Oligocene transition (38 Ma ago) was marked by a global biotic crisis, the most significant one in the Cenozoic, when the abyssal part of the ocean was filled with cold water to form the psychrosphere. At least five major impact events, which preceded the Oligocene mass extinction of the biota, occurred in the terminal Eocene (36–35 Ma ago).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Barash, “Development of Marine Biota in the Paleozoic in Response to Abiotic Factors,” Okeanologiya 46(6) 899–910 (2006) [Oceanology 46, 848–858 (2006)].Google Scholar
  2. 2.
    M. S. Barash, “Evolution of the Mesozoic Oceanic Biota: Response to Abiotic Factors,” Okeanologiya 48(4) 641–647 (2008) [Oceanology 48, 538–553 (2008)].Google Scholar
  3. 3.
    O. B. Dmitrenko, “Paleoclimatic Environment of the Paleogene Southern Ocean by Nannofossils,” Okeanologiya 44(1) 132–144 (2004) [Oceanology 44, 121–134 (2004)].Google Scholar
  4. 4.
    L. W. Alvarez, W. Alvarez, F. Asaro, and H. V. Michel, “Extraterrestrial Cause for the Cretaceous-Tertiary Extinction: Experimental Results and Theoretical Interpretation,” Science 208, 1095–1108 (1980).CrossRefGoogle Scholar
  5. 5.
    A. Boersma and I. Premoli Silva, “Paleocene Planktonic Foraminiferal Biogeography and the Paleoceanography of the Atlantic Ocean,” Micropaleontology 29, 355–381 (1983).CrossRefGoogle Scholar
  6. 6.
    A. Boersma and I. Premoli Silva, “Distribution of Paleogene Planktonic Foraminifers—Analogies with the Recent?,” Paleogeogr. Paleoclimat. Paleoecol. 83, 29–48 (1991).CrossRefGoogle Scholar
  7. 7.
    A. Boersma and N. Shackleton, “Tertiary Oxygen and Carbon Isotope Stratigraphy, Site 357 (Mid-Latitude South Atlantic),” DSDP Intit. Repts. 39, 911–924 (1977).Google Scholar
  8. 8.
    T. J. Bralower, I. Premoli Silva, and M. J. Malone, “A Remarkable 120-m.y. Record of Climate and Oceanography from Shatsky Rise, Northwest Pacific Ocean, Ocean Drilling Program Leg 198,” Geophys. Res. Abstracts 8 (2006) SRef-ID: 1607-7962/gra/EGU06-A-04727.Google Scholar
  9. 9.
    C. Cervato and L. Burckle, “Patterns of First and Last Appearance in Diatoms: Oceanic Circulation and the Position of Polar Fronts during the Cenozoic,” Paleoceanography 18(2) (2003). 1055, doi: 10.1029/2002PA000805.CrossRefGoogle Scholar
  10. 10.
    B. S. Cramer, and D. V. Kent, “Bolide Summer: The Paleocene/Eocene Thermal Maximum as a Response to an Extraterrestrial Trigger,” Paleogeogr. Paleoclimat. Paleoecol. 224, 144–166 (2005).CrossRefGoogle Scholar
  11. 11.
    G. R. Dickens, J. R. O’Neil, D. K. Rea, and R. M. Owen, “Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene,” Paleoceanography 10, 965–971 (1995).CrossRefGoogle Scholar
  12. 12.
    B. Diekmann, G. Kuhn, R. Gersonde, and A. Mackensen, “Middle Eocene to Early Miocene Environmental Changes in the Sub-Antarctic Southern Ocean: Evidence from Biogenic and Terrigenous Depositional Patterns at ODP Site 1090,” Global and Planet. Change 40, 295–313 (2004).CrossRefGoogle Scholar
  13. 13.
    O. B. Dmitrenko, “Nannofossils Paleoceanographic Changes in the Paleogene Southern Ocean,” in 4th Intern. Congr.: Environmental Micropaleontology, Microbiology, and Meiobenthology” (Isparta, 2004), p. 52.Google Scholar
  14. 14.
    K. A. Farley, A. Montanari, E. M. Schoemaker, and C. S. Schoemaker, “Geochemical Evidence for a Comet Shower in the Late Eocene,” Science 280, 1250–1253 (1998).CrossRefGoogle Scholar
  15. 15.
    S. Funakawa, H. Nishi, Th. C. Moore, and C. A. Nigrini, “Radolarian Faunal Turnover and Paleoceanographic Change around Eocene/Oligocene Boundary in the Central Equatorial Pacific, ODP Leg 199, Holes 1218A, 1219A, and 1220A,” Paleogeogr. Paleoclimat. Paleoecol. 230(3–4), 183–203 (2006). doi: 10.1016/j.palaeo.2005.07.0.14.CrossRefGoogle Scholar
  16. 16.
    S. Galeotti, H. Brinkhuis, and M. Huber, “Record of Earliest Danian Short-term Cooling from the Western Tethys: A Smoking Gun for the Impact-winter Hypothesis?,” Abstracts 32 IGC. Session 302-10 (Florence, 2004).Google Scholar
  17. 17.
    F. M. Gradstein and J. G. Ogg, “Geologic Time Scale 2004 — Why, How, and Where Next!,” Lethaia 37, 175–181 (2004).Google Scholar
  18. 18.
    D. G. Jenkins, “Initiation of the Protocircum-Antractic Current,” Nature 252, 371 (1974).CrossRefGoogle Scholar
  19. 19.
    C. M. John, S. Bonaty, J. C. Zachos, et al., “The Record of Paleogene-Eocene Events in the North-Eastern Pacific: A Perspective from Californian Shelf sediments,” in 8th Intern. Conf. on Paleoceanography. An Ocean View of Global Change. 5–10 September 2004 Biarritz, France. Program and Abstracts. UMR 5805 EPOC (CNRS Bordeaux I University, France, 2004), p. 40.Google Scholar
  20. 20.
    J. P. Kennett and P. F. Barker, “Latest Cretaceous to Cenozoic Climate and Oceanographic Developments in the Weddell sea, Antarctica: An Ocean-drilling Perspective,” Proc. ODP. Sci. Res. 113, 937–960 (1990).Google Scholar
  21. 21.
    J. P. Kennett and L. D. Stott, “Terminal Paleocene Mass Extinction in the Deep Sea: Association with Global Warming,” in Effects of Past Global Change on Life (Nat. Ac. Press, 1995), pp. 94–107.Google Scholar
  22. 22.
    D. V. Kent, B. S. Cramer, L. Lanci, et al., “A Case for a Comet Impact Trigger for the Paleocene/Eocene Thermal Maximum and Carbon Isotope Excursion,” Earth and Sci. Lett. 211, 13–26 (2003).CrossRefGoogle Scholar
  23. 23.
    L. A. Lawver and L. M. Gahagan, “Evolution of Cenozoic Seaways in the Circum-Antarctic Region,” Paleogeogr. Paleoclimat. Paleoecol. 198(3–4), 11–37 (2003).CrossRefGoogle Scholar
  24. 24.
    L. J. Lourens, A. Sluijs, D. Kroon, et al., “LEG ODP,” in 8th Intern. Conf. on Paleoceanography. An Ocean View of Global Change. 5–10 September 2004 Biarritz, France. Program and Abstracts. UMR 5805 EPOC (CNRS Bordeaux I University, France, 2004), p. 45.Google Scholar
  25. 25.
    G. R. McGhee Jr, “The Multiple Impacts Hypothesis for Mass Extinction: A Comparison of the Late Devonian and the late Eocene,” Paleogeogr. Paleoclimat. Paleoecol. 1768, 47–58 (2001).CrossRefGoogle Scholar
  26. 26.
    B. McGowran, “Fifty Million Years Ago,” American Scientist, January–February, 30–39 (1990).Google Scholar
  27. 27.
    K. G. Miller, T. R. Janechek, M. E. Katz, and D. J. Keil, “Abyssal Circulation and Benthic Foraminiferal Changes near the Paleocene/Eocene Boundary,” Paleoceanography 2, 741–771 (1987).CrossRefGoogle Scholar
  28. 28.
    M. G. Murphy and J. P. Kennett, “Development of Latitudinal Thermal Gradients during the Oligocene: Oxygen-isotope Evidence from the Southwest Pacific,” Init. Repts. DSDP 90, 1347–1360 (1985).Google Scholar
  29. 29.
    C. Müller, “Climatic Evolution during the Neogene and Quaternary Evidenced by Marine Microfossil Assemblages,” Paleobiol. Continent 42, 359–369 (1984).Google Scholar
  30. 30.
    R. Norris and F. Nunes, “Productivity Maximum across the Paleocene-Eocene Boundary Supported by Faunal Evidence,” in 8th Intern. Conf. on Paleoceanography. An Ocean View of Global Change. 5–10 September 2004 Biarritz, France. Program and Abstracts. UMR 5805 EPOC (CNRS Bordeaux I University, France, 2004).Google Scholar
  31. 31.
    H. A. Pfuhl and I. N. McCave, “Investigating the Link between Antarctic Circumpolar Current Inception and Events at the Oligocene-Miocene Transition,” Geophys. Res. Abstracts 8 (2006). SRef-ID: 1607-7962/gra/EGU06-A-06047.Google Scholar
  32. 32.
    R. A. Ronde, “Climate Change over the Last 65 Million years,” http://www.globalwarmingart.com/wiki/Image:65_Myr_Climate_Change_Rev_png.
  33. 33.
    F. Sangiorgi, H.-J. Brumsack, D. A. Willard, et al., “A 26 Million Year Gap in the Central Arctic Record at the Greenhouse-Icehouse Transition: Looking for Clues,” Paleoceanography 23 (2008). PA1S04, doi: 10.1029/2007PA0014471.Google Scholar
  34. 34.
    F, Sangiorgi, E. E. van Soelen, D. J. A. Spofforth, et al., “Cyclicity in the Middle Eocene Central Atlantic Ocean Sediment Record: Orbital Forcing and Environmental Response,” Paleoceanography 23 (2008). PA1S04, doi: 10.1029/2007PA001451.Google Scholar
  35. 35.
    D. N. Schmidt, H. R. Thierstein, and J. Bollmann, “The Evolutionary History of Size Variations of Planktic Foraminiferal Assemblages in the Cenozoic,” Paleogeogr. Paleoclimat. Paleoecol. 212(1–2), 159–180 (2004). doi: 10.1016/j.palaeo.2004.06.002.Google Scholar
  36. 36.
    N. J. Shackleton, “Oxygen Isotope Evidence for Cenozoic Climate Change,” in Fossils and Climate. Geological Journal special Issues, Ed. by P.J. Brenchley (N.Y., 1984), pp. 27–34.Google Scholar
  37. 37.
    S. Spezzaferri, “Planktonic Foraminferal Paleoclimatic Implications across the Oligocene-Miocene Transition in the Oceanic Record (Atlantic, Indian, and South Pacific),” Paleogeogr. Paleoclimat. Paleoecol. 114(1), 43–74 (1995).CrossRefGoogle Scholar
  38. 38.
    C. E. Stickley, N. Ko, H.-J. Brumsack, et al., “A Siliceous Microfossil View of Middle Eocene Arctic Paleoenvironments: A Window of Biosilica Production and Preservation,” Paleoceanography 23 (2008). PA1S04, doi:10.1029/2007PA001485.Google Scholar
  39. 39.
    E. Thomas, “Late Cretaceous-Early Eocene Mass Extinction in Deep Sea,” Geol. Soc. Amer. Spec. Paper 247, 481–495 (1990).Google Scholar
  40. 40.
    E. Thomas, “Starvation, Asphyxiation, Eutrophication, and Dissolution: Killing Benthic Foraminifera at the End of the Paleocene,” in 8th Intern. Conf. on Paleoceanography. An Ocean View of Global Change. 5–10 September 2004 Biarritz, France. Program and Abstracts. UMR 5805 EPOC (CNRS Bordeaux I University, France, 2004), p. 56.Google Scholar
  41. 41.
    L. M. Waddell and T. C. Moore, “Salinity of the Eocene Arctic Ocean from Oxygen Isotope Analysis of Fish Bone Carbonate,” Paleoceanography 23 (2008). PA1S12, doi: 10.1029/2007PA001451.Google Scholar
  42. 42.
    J. Whitehead, D. A. Papanastassiou, J. G. Spray, et al., “Late Eocene Impact Ejecta: Geochemical and Isotopic Connections with the Popigai Impact Structure,” Earth and Planet. Sci. Lett. 181, 473–487 (2000). doi: 10.1016/Soo12-821X(00)00225-9.CrossRefGoogle Scholar
  43. 43.
    J. C. Zachos, M. Pagani, L. Sloan, et al., “Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science 292, 686–693 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Shirshov Institute of OceanolgyRussian Academy of SciencesMoscowRussia

Personalised recommendations