Oceanology

, Volume 47, Issue 5, pp 705–717

Plate tectonics of the northern part of the Pacific Ocean

  • E. V. Verzhbitsky
  • M. V. Kononov
  • V. D. Kotelkin
Marine Geology

Abstract

Geophysical data on the northern part of the Pacific Ocean were systematized to compile a map of geomagnetic and geothermal studies of the Bering Sea. The absence of reliable data about the formation time of the Bering Sea structures of oceanic and continental origins is noted; this hampered the assessment of the geodynamical processes in the North Pacific. Based on the geophysical data, we estimated the age of the structures of the Bering Sea floor such as the Commander Basin (21 My), the Shirshov Ridge (95 and 33 My in the northern and southern parts, respectively), the Aleutian Basin (70 My), the Vitus Arch (44 My), the Bowers Ridge (30 My), and the Bowers Basin (40 My). These values are confirmed by the geological, geophysical, and kinematic data. A numerical modeling of the formation of extensive regional structures (Emperor Fracture Zone, Chinook Trough, and others) in the Northern Pacific is carried out. A conclusion was made on the basis of the geological and geothermal analysis that the northern and southern parts of the Shirshov Ridge have different geological ages and different tectonic structures. The northern part of the ridge is characterized by an upthrust-nappe terrain origin, while the southern part has originated from a torn-away island arc similar to the origin of the Bowers Ridge. The sea floor of the Aleutian Basin represents a detached part of the Upper Cretaceous Kula plate, on which spreading processes took place in the Vitus Arch area in the Eocene. The final activity phase in the Bering Sea began 21 My B.P. by spreading of the ancient oceanic floor of the Commander Basin. Based on the age estimations of the structures of the Bering Sea floor, the results of the modeling of the process of formation of regional fracture zones and of the geomagnetic, geothermal, tectonic, geological, and structural data, we calculated and compiled a kinematic model (with respect to a hot spot reference system) of the northern part of the Pacific Ocean for 21 My B.P.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Baranov, I. A. Basov, P. A. Gladkikh, et al., “Base-rocks of the Shirshov Ridge (Bering Sea),” Okeanologiya 24(6), 935–941 (1984).Google Scholar
  2. 2.
    N. A. Bogdanov, V. S. Vishnevskaya, and A. N. Sukhov, “Upper Cretaceous Formations of the Submarine Shirshov Ridge (Bering Sea),” Dokl. Akad. Nauk SSSR 273(5), 1183–1187 (1983).Google Scholar
  3. 3.
    G. M. Valyashko, G. B. Chernavskii, N. I. Seliverstov, and A. N. Ivanenko, “Back-Arc Spreading in the Commander Basin,” Dokl. Akad. Nauk 338(2), 212–216 (1993).Google Scholar
  4. 4.
    B. I. Vasil’ev, K. I. Sigova, A. I. Obzhirov, and I. V. Yugov, Geology and Oil and Gas Properties of the Marginal Seas of the Northeastern Pacific Ocean (Dal’nauka, Vladivostok, 2001) [in Russian].Google Scholar
  5. 5.
    E. V. Verzhbitskii, “Geothermal Regime and the Age of the Oceanic and Continental Lithosphere (By the Example of Ionian and Adriatic Basins of the Mediterranean Sea),” Okeanologiya 41(1), 132–137 (2001) [Oceanology 41 (1), 127–132 (2001)].Google Scholar
  6. 6.
    E. V. Verzhbitskii, “Geothermal Regime, Floor Tectonics, and Temperature Conditions of the Hydrocarbon Generation in the Eastern Part of the Barents Sea,” Geotektonika, No. 1, 86–96 (2002).Google Scholar
  7. 7.
    E. V. Verzhbitskii, V. G. Zolotarev, and I. M. Sborshchikov, “Heat Flow in Back-Arc Basins (By the Example of the Tyrrhenian Sea),” Okeanologiya 31(1), 164–168 (1991).Google Scholar
  8. 8.
    E. V. Verzhbitskii and M. V. Kononov, “Heat Flow and Geodynamics of the Shatskii and Hess Rises,” Okeanologiya 44(3), 432–439 (2004) [Oceanology 44 (3), 404–411 (2004)].Google Scholar
  9. 9.
    E. V. Verzhbitskii, M. V. Kononov, A. F. Byakov, and V. P. Dulub, “Genesis of the Hawaiian and Emperor Ridges of the Pacific Ocean,” Dokl. Akad. Nauk 403(3), 399–404 (2005).Google Scholar
  10. 10.
    Yu. I. Galushkin, A. V. Murav’ev, Ya. B. Smirnov, and V. I. Sugrobov, “A Study of the Structure of the Geothermal Field of the Lithosphere in the Southern Part of the Commander Basin,” Vulkanol. Seismol., No. 5, 3–17 (1986).Google Scholar
  11. 11.
    A. Ya. Gol’mshtok, “On the Influence of Sedimentation on the Abyssal Heat Flow,” Okeanologiya 19(6), 1133–1138 (1979).Google Scholar
  12. 12.
    L. P. Zonenshain, V. G. Kaz’min, L. M. Natapov, et al., “Paleogeographic Atlas of North Eurasia,” (Institut tektoniki litosfernykh plit RAEN, Moscow, 2000) [in Russian].Google Scholar
  13. 13.
    L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Lithosphere Plate Tectonics of the Territory of the USSR. Book 2 (Nedra, Moscow, 1990) [in Russian].Google Scholar
  14. 14.
    L. P. Zonenshain, L. M. Natapov, L. A. Savostin, and A. P. Stavskii, “Plate Tectonics of Northeast Asia in Relation to the Opening of the Arctic Basin and the North Atlantic,” Okeanologiya 18(6), 38–47 (1978).Google Scholar
  15. 15.
    P. K. Kepezhinskas, Cenozoic Volcanic Units of the Regions of Marginal Seas (Nauka, Moscow, 1990) [in Russian].Google Scholar
  16. 16.
    M. V. Kononov, Plate Tectonics of the Northwestern Pacific Ocean (Nauka, Moscow, 1989) [in Russian].Google Scholar
  17. 17.
    E. A. Konstantinovskaya, “Mechanism of Accretion Of Continental Crust: An Example of West Kamchatka,” Geotektonika, No. 5, 59–78 (2002).Google Scholar
  18. 18.
    V. D. Kotelkin, “Selected Features of Developed Thermal Convection and Their Geophysical Manifestations,” In Urgent Problems of Aero and Fluid Dynamics. 11th School-Seminar, Abstracts of Papers (Moscow State University, Moscow, 2003), pp. 47–48 [in Russian].Google Scholar
  19. 19.
    L. I. Lobkovskii and V. D. Kotelkin, “Two-Layered Thermochemical Model for Mantle Convection and Its Geodynamical Implications,” in Problems of Global Geodynamics. Materials of a Theoretical Workshop of OGGGGN RAN, 1998–1999, Ed. by D. V. Rundkvist (GEOS, Moscow, 2000), pp. 29–53 [in Russian].Google Scholar
  20. 20.
    L. I. Lobkovskii and V. D. Kotelkin, “Intermitting Thermoeclogite Mantle Convection with Account for the Phase Transition at a Depth of 670 km: A Comparison with Seismostratigraphic Data,” in Tectonics of the Neogene: General and Regional Aspects. Materials of the 34th Tectonic Workshop. Vol. 1 (GEOS, Moscow, 2001), pp. 378–381 [in Russian].Google Scholar
  21. 21.
    A. V. Murav’ev, Extended Abstract of Doctoral Candidate Dissertation in Geollogy (GIN, Moscow, 1990) [in Russian].Google Scholar
  22. 22.
    G. E. Nekrasov, “Tectonic Origin of the Kuril-Kamchatka Region and Issues of Geodynamics of the Folded Rimming of the North Pacific,”, Geotektonika, No. 6, 53–79 (2003).Google Scholar
  23. 23.
    Yu. P. Neprochnov, V. V. Sedov, and L. R. Merklin, “Tectonic Structure of the Shirshov Ridge (Bering Sea),” Geotektonika, No. 3, 21–37 (1985).Google Scholar
  24. 24.
    N. I. Seliverstov, Seafloor Structure in the off-Kamchatka Areas and Geodynamics of the Zone of Junction between the Kamchatka and Aleutian Island Arcs (Nauchnyi Mir, Moscow, 1998) [in Russian].Google Scholar
  25. 25.
    Ya. B. Smirnov and V. M. Sugrobov, “Terrestrial Heat Flow in the Kuril-Kamchatka and Aleutian Provinces. 1. Heat Flow and Tectonics,” Vulkanol. Seismol., No. 1, 59–73 (1979).Google Scholar
  26. 26.
    Ya. B. Smirnov and V. M. Sugrobov, “Terrestrial Heat Flow in the Kuril-Kamchatka and Aleutian Province. 2. Map of the Measured and Background Heat Flow Values,” Vulkanol. Seismol., No. 1, 16–31 (1980).Google Scholar
  27. 27.
    Ya. B. Smirnov and V. M. Sugrobov, “Terrestrial Heat Flow in the Kuril-Kamchatka and Aleutian Provinces. 3. Estimation of Deep Temperatures and Lithosphere Thickness,” Vulkanol. Seismol., No. 2, 3–18 (1980).Google Scholar
  28. 28.
    Ya. B. Smirnov, V. M. Sugrobov, and Yu. I. Galushkin, “Heat Flow in the Zone of Junction between the Aleutian and Kuril-Kamchatka Island Arc Systems,” Vulkanol. Seismol., No. 6, 96–115 (1982).Google Scholar
  29. 29.
    A. P. Stavskii, V. D. Chekhovich, M. V. Kononov, and L. P. Zonenshain, “Plate Tectonics and Palynspastic Reconstructions of the Anadyr’-Koryak Region,” Geotektonika, No. 6, 32–42 (1988).Google Scholar
  30. 30.
    V. E. Khain, Tectonics of Continents and Oceans (Year of 2000) (Nauchnyi Mir, Moscow, 2001) [in Russian].Google Scholar
  31. 31.
    V. D. Chekhovich, N. A. Bogdanov, I. R. Kravchenko-Berezhnoi, et al., Geology of the Western Part of the Bering Sea Region (Nauka, Moscow, 1990) [in Russian]Google Scholar
  32. 32.
    B. Z. Ben-Avraham and A. K. Cooper, “Early Evolution of the Bering Sea by Collision of Oceanic Rises and North Pacific Subduction Zones,” Geology 92, 485–495 (1981).Google Scholar
  33. 33.
    S. C. Cande, R. L. Larson, W. C. Pitman, et al., Magnetic Lineation Map of the World (Lamont-Doherty Geol. Observatory, Palisades, New York, 1986).Google Scholar
  34. 34.
    R. L. Carlson and H. P. Johnson, “On Modeling the Thermal Evolution of the Oceanic Upper Mantle: An Assessment of Cooling Plate Model,” J. Geophys. Res. 99(B2), 3201–3214 (1994).CrossRefGoogle Scholar
  35. 35.
    A. K. Cooper, M. S. Marlow, and D. W. Scholl, “Mesozoic Magnetic Lineations in the Bering Sea Marginal Basin,” J. Geophys. Res. 81, 1916–1934 (1976).Google Scholar
  36. 36.
    A. K. Cooper, M. S. Marlow, D. W. Scholl, and A. J. Stevenson, “Evidence for Cenozoic Crustal Extension in the Bering Sea Region,” Tectonics 11(4), 719–731 (1992).Google Scholar
  37. 37.
    A. K. Cooper, D. W. Scholl, and M. S. Marlow, “Structural Framework, Sedimentary Sequences, and Hydrocarbon Potential of the Aleutian and Bowers Basins, Bering Sea,” in Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Ocean Basin, Beaufort Sea to Baja California) Geol. Soc. Am. Earth Sci. Ser. 6, 1987), pp. 473–502.Google Scholar
  38. 38.
    R. D. Cottrell and J. A. Tarduno, “A Late Cretaceous Pole for the Pacific Plate: Implications for Apparent and True Polar Wander and the Drift of Hotspots,” Tectonophysics 362, 321–333 (2003).CrossRefGoogle Scholar
  39. 39.
    J. S. Creager, D. W. Scholl, R. E. Boyce, et al., “Site 188,” Initial Reports of the Deep-Sea Drilling Project, 19, U.S. Government Printing Office, Washington, DC, 263–305 (1973).Google Scholar
  40. 40.
    J. S. Creager, D. W. Scholl, R. E. Boyce, et al., “Site 190,” Initial Reports of the Deep-Sea Drilling Project, 19, U.S. Government Printing Office, Washington, DC, 359–412 (1973).Google Scholar
  41. 41.
    J. S. Creager, D. W. Scholl, R. E. Boyce, et al., “Site 191,” Initial Reports of the Deep-Sea Drilling Project, 19, U.S. Government Printing Office, Washington, DC, 314–367 (1973).Google Scholar
  42. 42.
    C. De Mets, R. G. Gordon, D. F. Argus, and S. Stein, “Current Plate Motions,” Geophys. J. Int. 101(2), 425–478 (1990).CrossRefGoogle Scholar
  43. 43.
    D. C. Engebretson, A. Cox, and R. G. Gordon, “Relative Motions between Oceanic Plates of the Pacific Basin,” J. Geophys. Res. 89(12), 10291–10310 (1984).Google Scholar
  44. 44.
    D. C. Engebretson, A. Cox, and R. G. Gordon, “Relative Motions between Oceanic and Continental Plates in the Pacific Basin,” Bull. Geol. Soc. Amer. Spec. Paper 206, 59 (1985).Google Scholar
  45. 45.
    E. Farrar and J. M. Dixon, “Early Tertiary Rupture of the Pacific Plate: 1700 km of Dextral Offset along the Emperor Trough-Line Islands Lineament,” Earth Planet. Sci. Lett. 53(3), 307–323 (1981).CrossRefGoogle Scholar
  46. 46.
    C. Gaina, R. Muller and R. D. Roest, “Late Cretaceous-Cenozoic Deformation of Northeast Asia,” Earth Planet. Sci. Lett. 197, 273–286 (2002).CrossRefGoogle Scholar
  47. 47.
    R. G. Gordon, “Paleomagnetic Test of the Emperor Fracture Zone Hypothesis,” Geophys. Rev. Lett. 9(11), 1283–1286 (1982).Google Scholar
  48. 48.
    K. D. Klitgord and H. Schouten, “Plate Kinematics of the Central Atlantic,” in The Geology of North America. V. M. The Western North Atlantic Region, Ed. by P.R. Vogt and B.E. Tucholke (Geol. Soc. Am., Boulder, Colo., 1986), pp. 351–378.Google Scholar
  49. 49.
    A. A. P. Koppers, J. P. Morgan, J. W. Morgan, et al., “Testing the Fixed Hypothesis Using 40Ar/Ar39 Age Progressions along Seamount Trails,” Earth Planet. Sci. Lett. 185, 237–252 (2001).CrossRefGoogle Scholar
  50. 50.
    M. G. Langseth, M. A. Hobart, and K. Horai, “Heat Flow in the Bering Sea,” J. Geophys. Res. 85, 3740–3750 (1980).Google Scholar
  51. 51.
    J. Mammerickx and G. F. Sharman, “Tectonic Evolution of the North Pacific during the Cretaceous Quiet Period,” J. Geophys. Res. 93(B4), 3009–3024 (1988).Google Scholar
  52. 52.
    M. S. Marlow, A. K. Cooper, S. V. Dadisman, et al., “Bowers Swell: Evidence for a Zone of Compressive Deformation Concentric with Bowers Ridge, Bering Sea,” Mar. Petrol. Geol 7(4), 398–423 (1990).CrossRefGoogle Scholar
  53. 53.
    P. Molnar and J. Stock, “Relative Motions of Hotspots in the Pacific, Atlantic, and Indian Ocean since Late Cretaceous Time,” Nature 327, 587–591 (1987).CrossRefGoogle Scholar
  54. 54.
    R. D. Muller, J. Y. Royer, and L. A. Lawver, “Revised Plate Motions Relative to the Hotspots from Combined Atlantic and Indian Ocean Hotspot Tracks,” Geology 21(3), 275–278 (1993).CrossRefGoogle Scholar
  55. 55.
    B. Parsons and J. C. Sclater, “An Analysis of the Variation of Ocean Floor Bathymetry and Heat Floor with Age,” J. Geophys. Res. 82(5), 803–827 (1977).Google Scholar
  56. 56.
    W. C. Pitman and M. Talwani, “Sea-Floor Spreading in the North Atlantic,” Geo-Mar. Lett. 83, 6196–6146 (1972).Google Scholar
  57. 57.
    D. K. Rea and J. M. Dixon, “Late Cretaceous and Paleogene Tectonic Evolution of the North Pacific,” Earth Planet. Sci. Lett. 65(1), 145–166 (1983).CrossRefGoogle Scholar
  58. 58.
    M. Renkin and G. Sclater, “Depth and Age in the North Pacific,” J. Geophys. Res. 93(B4), 2919–2935 (1988).CrossRefGoogle Scholar
  59. 59.
    K. R. Richadson, J. R. Smallwood, R. S. White, et al., “Crustal Structure beneath the Faeroc Islands and the Faeroe-Iceland Ridge,” Tectonophysics 300, 159–180 (1998).CrossRefGoogle Scholar
  60. 60.
    W. W. Sager, “Basalt Core Paleomagnetic Data from Ocean Drilling Program Site 883 on Detroit Seamount, Northern Emperor Seamount Chain, and Implications for the Paleolatitude of the Hawaiian Hotspot,” Earth Planet. Sci. Lett. 199, 347–358 (2002).CrossRefGoogle Scholar
  61. 61.
    W. W. Sager, A. J. Lamarche, and C. Kopp, “Paleomagnetic Modeling of Seamounts near the Hawaiian-Emperor Bend,” Tectonophysics 405, 121–140 (2005).CrossRefGoogle Scholar
  62. 62.
    D. W. Scholl, E. C. Buffington, and M. S. Marlow, “Plate Tectonics and the Structural Evolution of the Aleutian-Bering Sea Region,” in Contributions to the Geology of the Bering Sea Basin and Adjacent Regions, Ed. by R. B. Forbes (Geol. Soc. Am. Spec. Papers 151, 1975), pp. 1–32.Google Scholar
  63. 63.
    D. W. Scholl and J. S. Creager, “Geologic Synthesis of Leg 19 (DSDP) Results: Far North Pacific, Aleutian Ridge and Bering Sea,” Initial Reports of the Deep-Sea Drilling Project, 19, U.S. Government Printing Office, Washington, DC, 897–913 (1973).Google Scholar
  64. 64.
    D. W. Scholl, J. R. Hein, M. Marlow, et al., “Meiji Sediment Tongue: North Pacific Evidence for Limited Movement Between the Pacific and North American Plates,” Geol. Soc. Am. Bull. 88(11), 1567–1576 (1977).CrossRefGoogle Scholar
  65. 65.
    D. W. Scholl, T. L. Vallier, and A. J. Stevenson, “Geologic Evolution and Petroleum Geology of the Aleutian Ridge,” in Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Ocean Basin, Beaufort Sea to Baja California Geol. Soc. Am. Earth Sci. Ser 6, 123–155 (1987).Google Scholar
  66. 66.
    C. R. Scotese, W. J. Nokleberg, J. W. H. Monger, et al., Dynamic Computer Model for the Metallogenesis and Tectonics of the Circum-North Pacific, Ed. by W. J. Nokleberg and M. F. Diggles (Open-File Report, 0 12-61, 2001) CD-ROM].Google Scholar
  67. 67.
    J. A. Tarduno and R. D. Cottrell, “Paleomagnetic Evidence for Motion of the Hawaiian Hotspot During Formation of the Emperor Seamounts,” Earth Planet. Sci. Lett. 153, 171–180 (1997).CrossRefGoogle Scholar
  68. 68.
    M. T. Woods and G. F. Davies, “Late Cretaceous Genesis of the Kula Plate,” Earth Planet. Sci. Lett. 58, 161–166 (1982).CrossRefGoogle Scholar
  69. 69.
    L. P. Zonenshain, L. A. Savostin, and B. V. Baranov, “Plate Boundaries of the USSR,” Episodes 7, 43–46 (1984).Google Scholar
  70. 70.
    L. P. Zonenshain, E. I. Pristavakina, M. V. Kononov, and B. V. Baranov, Plate Tectonic Reconstructions of the Arctic Region: A Russian Perspective (Arctic Shelf Programme (CASP). Report No. 595, Cambridge, 1994).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • E. V. Verzhbitsky
    • 1
  • M. V. Kononov
    • 1
  • V. D. Kotelkin
    • 2
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations