, Volume 46, Issue 6, pp 859–868 | Cite as

Hydrological changes in the Laptev Sea during the Holocene inferred from the studies of aquatic palynomorphs

  • T. S. Klyuvitkina
  • H. A. Bauch
Marine Geology


Based on the study of aquatic palynomorph assemblages in two Holocene sediment cores obtained from the eastern Laptev Sea shelf, the main stages in the postglacial transgression are reconstructed for the last 11.3 ky. During that period, the inner shelf of the Laptev Sea (sea depth of 51 m) was already flooded representing an area of intense freshwater sedimentation in the immediate proximity from the river mouth in the period of 11.3 to 10.3 ky B.P. Approximately 1.0–1.5 ky later, the inner shelf (sea depth of 32 m) was flooded, although it remained under the influence of the river runoff up to 7.4 ky B.P. The period of 10.3–7.4 ky B.P. was marked by the dominant dinoflagellate cysts Operculodinium centrocarpum among the aquatic palynomorphs, the appearance of more thermophilic dinoflagellate species, and elevated values of the AH ratio, which indicates an enhanced influx of relatively warm North Atlantic waters to the Laptev Sea shelf. The environment close to the present-day one became dominant on the outer and inner shelf of the Laptev Sea approximately 8.6 and 7.4 ky B.P., respectively.


Arctic Ocean River Runoff Atlantic Water Palynomorphs North Atlantic Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Yu. Gukov, Ecosystem of the Siberian Polynya (Nauchnyi Mir, Moscow, 1999) [in Russian].Google Scholar
  2. 2.
    A. D. Dobrovol’skii and B. S. Zalogin, Seas of the USSR (Mysl’, Moscow, 1982) [in Russian].Google Scholar
  3. 3.
    V. F. Zakharov, Arctic Ice and Present-Day Natural Processes (Gidrometeoizdat, Leningrad, 1981) [in Russian].Google Scholar
  4. 4.
    V. F. Zakharov, Arctic Ice in the Climatic System (Gidrometeoizdat, St. Petersburg, 1996) [in Russian].Google Scholar
  5. 5.
    V. F. Zakharov, “Role of Extra-Fast Ice Polynyas in the Hydrological and Ice Regimes of the Laptev Sea,” Okeanologiya 6(6), 1014–1022 (1966).Google Scholar
  6. 6.
    T. S. Klyuvitkina and E. I. Polyakova, “Changes in the Paleoceanological Conditions in the Eastern Part of the Laptev Sea in the Holocene According to the Materials of the Dinoflagellate Cyst Examination,” in Geology of Seas and Oceans. Abstracts of Papers of 15th International School on Marine Geology (GEOS, Moscow, 2003), Vol. 1, pp. 98–99 [in Russian].Google Scholar
  7. 7.
    A. P. Lisitsyn, “Marginal Filter of the Oceans,” Okeanologiya 34(5), 735–747 (1994).Google Scholar
  8. 8.
    Yu. B. Okolodkov, Extended Abstract of Doctoral Dissertation in Biology (St. Petersburg, 2000) [in Russian].Google Scholar
  9. 9.
    Yu. A. Pavlidis, Shelf of the World Ocean in the Late Quaternary Time (Nauka, Moscow, 1992) [in Russian].Google Scholar
  10. 10.
    Yu. I. Semenov and E. P. Shkatov, “Bottom Geomorphology of the Laptev Sea,” in Marine Geology (NIIGA, Leningrad, 1971), No. 1, pp. 42–47 [in Russian].Google Scholar
  11. 11.
    A. Yu. Stepanova, Extended Abstract of Doctoral Dissertation in Geology—Mineralogy (Moscow, 2004) [in Russian].Google Scholar
  12. 12.
    K. Aagard and E. C. Carmack, “The Role of Sea Ice and Other Fresh Water in the Arctic Circulation,” J. Geophys. Res. 94, 14485–14498 (1989).CrossRefGoogle Scholar
  13. 13.
    M. S. Barss and G. L. Williams, “Palynology and Nanofossil Processing Techniques,” Geol. Surv. Can. (1973).Google Scholar
  14. 14.
    H. A. Bauch, H. Kassens, H. Erlenkeuser, et al., “Depositional Environment of the Laptev Sea (Arctic Siberia) During the Holocene,” Boreas, No. 28, 194–204 (1999).Google Scholar
  15. 15.
    H. A. Bauch, T. Mueller-Lupp, E. Taldenkova, et al., “Chronology of the Holocene Transgression at the North Siberian Margin,” Global and Planetary Change 31, 125–139 (2001).CrossRefGoogle Scholar
  16. 16.
    H. A. Bauch and Ye. I. Polyakova, “Diatom-Inferred Salinity Records from the Arctic Siberian Margin: Implications for Fluvial Runoff Patterns During the Holocene,” Paleooceanography 2(18), 1–10 (2003).Google Scholar
  17. 17.
    J. P. Bujak, “Cenozoic Dinoflagellate Cysts and Acritarchs from the Bering Sea and Northern North Pacific, DSDP Leg 19,” Micropaleontology 2(30), 180–212 (1984).CrossRefGoogle Scholar
  18. 18.
    H. Cremer, “Die Diatomeen der Laptevsee (Arktischer Ozean): Taxonomie und Biogeographische Verbreitung,” Berichte zur Polarforschung 260, 1–205 (1998).Google Scholar
  19. 19.
    Dale B. “Dinoflagellate Cyst Ecology: Modelling and Geological Application,” in Principals and Applications, New Directions, Other Applications and Floral History, Ed. by J. Jansonius and D. C. McGregor (American Association of Stratigraphic Palynologists, 1996), Part 3, pp. 1149–1275.Google Scholar
  20. 20.
    A. De Vernal, M. Henry, J. Matthiessen, et al., “Dinoflagellate Cyst Assemblages As Tracers of Sea-Surface Conditions in the Northern North Atlantic, Arctic, and Sub-Arctic Seas: The New ‘N = 677’ Data Base and Its Application for Quantitative Palaeoceanographic Reconstruction,” J. Quaternary Science, No. 16 (7), 681–698 (2001).Google Scholar
  21. 21.
    I. A. Dmitrenko, V. A. Gribanov, D. L. Volkov, and H. Kassens, “Impact of River Discharge on the Sea Land Fast Ice Extention in the Russian Arctic Shelf Area,” in Proc. 15th Int. Conf. on Port and Ocean Enginering Under Arctic Conditions, Ed. by J. Tuhkuri and K. Riska (1999), pp. 311–321.Google Scholar
  22. 22.
    I. A. Dmitrenko, J. A. Hoelemann, S. A. Kirilov, et al., “Thermal Regime of the Laptev Sea Bottom Layer and Affecting Processes,” Cryosphere of the Earth 5(3), 40–55 (2001).Google Scholar
  23. 23.
    V. V. Gordeev, “River Input of Water, Sediment, Major Ions, Nutrients, and Trace Metals from Russian Territory to the Arctic Ocean,” in The Freshwater Budget of the Arctic Ocean, Ed. by E. L. Lewis et al. (Kluwer Acad., The Nehterlands, 2000), pp. 297–322.Google Scholar
  24. 24.
    V. V. Gordeev, J. M. Martin, I. S. Sidorov, and M. V. Sidorova, “A Reassessment of the Eurasian River Input of Water, Sediment, Major Elements, and Nutrient to the Arctic Ocean,” Am. J. Sci. 296, 664–691 (1996).CrossRefGoogle Scholar
  25. 25.
    K. Grosfjeld, E. Larsen, H. P. Sejrup, et al., “Dinoflagellate Cysts Reflecting Surface-Water Conditions in Volgafiorden, Western Norway During the Last 11300 Years,” Boreas, No. 28, 403–415 (1999).Google Scholar
  26. 26.
    M. L. Holmes, Late Pleistocene and Holocene History of the Laptev Sea (Unpublished Doctoral Thesis, University of Washington, DC, 1967).Google Scholar
  27. 27.
    M. L. Holmes and J. S. Creager, “Holocene History of the Laptev Sea Continental Shelf,” in Marine Geology and Oceanography of the Arctic Sea, Ed. by Y. Herman (Springer, New York, 1974), pp. 211–229.Google Scholar
  28. 28.
    V. V. Ivanov and A. A. Piskun, “Distribution of River Water and Suspended Sediment Loads in the Deltas of Rivers in the Basins of the Laptev and East Siberian Seas,” in Land-Ocean System in the Siberian Arctic: Dynamics and History (Springer, Berlin, 1999), pp. 239–250.Google Scholar
  29. 29.
    D. M. Jacobson and D. M. Anderson, “Thecate Heterotrophic Dinoflagellates: Feeding Behavior and Mechanisms,” Journal of Phycology, No. 22, 249–258 (1986).Google Scholar
  30. 30.
    H. Kassens, I. A. Dmitrenko, V. Rachold, et al., “Russian and German Scientists Explore the Arctic’s Laptev Sea and Its Climate System,” EOS Transaction American Geophysical Union 79, 317–323 (1998).CrossRefGoogle Scholar
  31. 31.
    H. P. Kleiber and F. Niessen, Land-Ocean Systems in the Siberian Arctic: Dynamics and History, Ed. by H. Kassens et al. (Springer, New York, 1999), pp. 635–656.Google Scholar
  32. 32.
    H. P. Kleiber, F. Niessen, and D. Weiel, “The Late Quaternary Evolution of the Western Laptev Sea Continental Margin, Arctic Siberia—Implications from Sub-Bottom Profiling,” Global and Planetary Change 31, 105–124 (2001).CrossRefGoogle Scholar
  33. 33.
    M. Kunz-Pirrung, “Dinoflagellate Cyst Assemblages in Surface Sediments of the Laptev Sea Region (Arctic Ocean) and Their Relation to Hydrographic Conditions,” J. Quaternary Science 16(7), 637–649 (2001).CrossRefGoogle Scholar
  34. 34.
    M. Kunz-Pirrung, “Distribution of Aquatic Palynomorphs in Surface Sediments from the Laptev Sea, Eastern Arctic Ocean,” in Land-Ocean System in the Siberian Arctic: Dynamics and History (Springer, Berlin, 1999), pp. 561–575.Google Scholar
  35. 35.
    M. Kunz-Pirrung, “Rekonstruktion der Oberflächenwassermassen der Östlichen Laptevsee im Holozän Anhand der Aquatischen Palynomorphen,” Berichte zur Polarforschung, No. 28, 1–117 (1998).Google Scholar
  36. 36.
    G. M. MacDonald, “Holocene Treeline History and Climate Change across Northern Eurasia,” Quaternary Research 53, 302–311 (2000).CrossRefGoogle Scholar
  37. 37.
    F. Marret and K. A. F. Zonneveld, “Atlas of the Modern Organic-Walled Dinoflagellate Cyst Distribution,” Review of Paleobotany and Palynology 125(1–2), 1–200 (2003).Google Scholar
  38. 38.
    J. Matthiessen, “Distribution Patterns of Dinoflagellate Cysts and Other Organic-Walled Microfossils in Recent Norwegian-Greenland Sea Sediments,” Mar. Micropalaeontology 24, 307–334 (1995).CrossRefGoogle Scholar
  39. 39.
    J. Matthiessen, M. Kunz-Pirrung, and P. J. Mudie, “Freshwater Chlorophycean Algae in Recent Marine Sediments of the Beaufort, Laptev, and Kara Seas (Arctic Ocean) As Indicators of River Runoff,” International Journal of Earth Sciences 89, 470–485 (2000).CrossRefGoogle Scholar
  40. 40.
    P. J. Mudie, “Circum-Arctic Quaternary and Neogene Marine Palynofloras: Paleoecology and Statistical Analysis Neogene and Quaternary Dinoflagellate Cysts and Acritarchs, Ed. by M. J. Head and J. H. Wrenn (American Association of Stratigraphic Palynologists Foundation, Dallas, 1992), pp. 347–390.Google Scholar
  41. 41.
    P. J. Mudie, R. Harland, J. Matthiessen, and A. de Vernal, “Marine Dinoflagellate Cysts and High Latitude Quaternary Paleoenvironmental Reconstructions: An Introduction,” J. Quaternary Science 16(7), 595–602 (2001).CrossRefGoogle Scholar
  42. 42.
    P. J. Mudie and A. Rochon, “Distribution of Dinoflagellate Cysts in the Canadian Arctic Marine Region,” J. Quaternary Science 16(7), 603–620 (2001).CrossRefGoogle Scholar
  43. 43.
    T. Mueller-Lupp, H. Erlenkeuser, H. A. Bauch, et al., “Input of Terrestrial Organic Matter into the Laptev Sea During the Holocene—Evidence from Stable Carbon Isotopes,” J. Earth Sciences 89, 563–568 (2000).CrossRefGoogle Scholar
  44. 44.
    S. L. Pfirman, R. Colony, D. Nqrnberg, et al., “Reconstructing the Origin and Trajectory of Drifting Arctic Seas Ice,” J. Geophys. Res. 102(12), 12575–12586 (1997).CrossRefGoogle Scholar
  45. 45.
    M. F. J. Pisaric, G. M. MacDonald, A. A. Velichko, and L. C. Cwynar, “The Late-Glacial and Post-Glacial Vegetation History of the Northwestern Limits of Beringia Based on Pollen, Stomate, and Tree Stump Evidence,” Quaternary Science Reviews 20(1–3), 235–245 (2001).CrossRefGoogle Scholar
  46. 46.
    Ye. I. Polyakova, H. A. Bauch, and H. A. Kassens, “Ice-Hydrological Regime Changes in the Late Holocene Laptev Sea,” Doklady Earth sciences 2(371), 315–317 (2000).Google Scholar
  47. 47.
    Ye. I. Polyakova, H. A. Bauch, and T. S. Klyuvitkina, “Early to Middle Holocene Changes in Laptev Sea Water Masses Deduced from Diatom and Aquatic Palynomorph Assemblages,” Global and Planetary Change 48, 208–222 (2005).CrossRefGoogle Scholar
  48. 48.
    Ye. I. Polyakova and H. A. Bauch, “Late Holocene Variations in the Conditions of Fluvial Runoff and Sea-Ice Cover in the Laptev Sea,” Terra Nostra, No. 99, 11–62 (1999).Google Scholar
  49. 49.
    A. P. Proshutinsky and M. A. Johnson, “Two Circulation Regimes of the Wind-Driven Arctic Ocean,” J. Geophys. Res. 102(C6), 12493–12514 (1997).CrossRefGoogle Scholar
  50. 50.
    A. Rochon, A. de Vernal, J.-L. Turon, et al., Distribution of Dinoflagellate Cysts in Surface Sediments from the North Atlantic Ocean and Adjacent Basins and Quantitative Reconstruction of Sea-Surface Parameters, American Association of Stratigraphic Palynologists Contribution Series 35 (1999).Google Scholar
  51. 51.
    N. N. Romanovskii, A. V. Gavrilov, V. E. Tumskoy, et al., “Environmental Evolution in the Laptev Sea Region During Late Pleistocene and Holocene,” Polarforschung, No. 67, 237–245 (2001).Google Scholar
  52. 52.
    A. V. Sher, S. A. Kuzmina, T. V. Kuznetsova, and L. D. Sulerzhitsky, “New Insights into the Weichselian Environment and Climate of the East Siberian Arctic, Derived from Fossil Insects, Plants, and Mammals,” Quaternary Science Reviews 24, 533–569 (2005).CrossRefGoogle Scholar
  53. 53.
    J. Stockmarr, “Tablets with Spores Used in Absolute Pollen Analysis,” Pollen and Spores, No. 13, 616–621 (1971).Google Scholar
  54. 54.
    M. Stuiver, P. J. Reimer, E. Bard, et al., “INTCAL 98 Radiocarbon Age Calibration, 24000-0 Cal. BP,” Radiocarbon 40, 1041–1083 (1998).Google Scholar
  55. 55.
    J. Svendsen, H. Alexanderson, V. Astakhov, et al., “Late Quaternary Ice Sheet History of Northern Eurasia,” Quaternary Science Reviews 23, 1229–1271 (2004).CrossRefGoogle Scholar
  56. 56.
    L. A. Timokhov, “Regional Characteristics of the Laptev and the East Siberian Seas: Climate, Topography, Ice Phases, Thermohaline Regime, and Circulation,” in Russian-German Cooperation in the Siberian Shelf Seas: Geo-system Laptev Sea, Ed. by H. Kassens, H. W. Hubberten, S. M. Pryamikov, and R. Stein (Reports on Polar Research, No. 144), 15–31 (1994).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • T. S. Klyuvitkina
    • 1
  • H. A. Bauch
    • 2
  1. 1.Geographical FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Mainz Academy of Sciences, Humanities, and LiteratureKielGermany

Personalised recommendations