Advertisement

Oceanology

, Volume 46, Issue 4, pp 501–512 | Cite as

Paleoceanography of the central sea of Okhotsk during the middle Pleistocene (350–190 ka) as inferred from micropaleontological data

  • M. S. Barash
  • A. G. Matul
  • G. Kh. Kazarina
  • T. A. Khusid
  • A. Abelmann
  • N. Biebow
  • D. Nürnberg
  • R. Tiedemann
Marine Geology

Abstract

The distribution of diatoms, radiolarians, planktonic and benthic foraminifers, and sediment components in the fraction >0.125 mm was analyzed in the core obtained from the central Sea of Okhotsk within the frameworks of the Russian-German KOMEX project. The core section characterizes the period 190–350 ka, which corresponds to marine-isotopic stages (MIS) 7 to 10. During glacial MIS 10 and MIS 8, the basin accumulated terrigenous material lacking microfossils or containing them in low abundance, which reflects, along with their composition, heavy sea-ice conditions, suppressed bioproductivity, and bottom environments aggressive toward calcium carbonate. Interglacial MIS 9 was characterized by elevated bioproductivity with accumulation of diatomaceous ooze during the climatic optimum (328 to 320 ka). The water exchange with the Pacific was maximal from 328 to 324 ka ago. Environments became moderate and close to the present-day ones at the end of the optimum exhibiting the possible existence of a dichothermal layer with substantial amounts of the surface Pacific water still flowing into the basin. Similar to interglacial MIS 5e and MIS 1, the “old” Pacific water determined near-bottom environments in the central Sea of Okhotsk during that period, although the influx of terrigenous material was higher, probably reflecting a more humid climate of the region. Slight warming marked the terminal MIS 8 (approximately 260 ka ago). The paleoceanographic situation during interglacial MIS 7 was highly variable: from warm-water to almost glacial. The main climatic optimum of MIS 7 occurred within 220–210 ka, when the subsurface stratification increased and the dichothermal layer developed. Bottom environments during the studied time interval, except for the optimum of interglacial MIS 9, resembled those characteristic of glacial periods: the actively formed “young” Okhotsk water displaced the “old” Pacific deep water.

Keywords

Benthic Foraminifera Marine Isotopic Stage Benthic Foraminifer Planktonic Foraminifer Climatic Optimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Barash, Quaternary Paleoceanology of the Atlantic Ocean (Nauka, Moscow, 1988) [in Russian].Google Scholar
  2. 2.
    M. S. Barash, N. V. Bubenshchikova, G. Kh. Kazarina, and T. A. Khusid, “Paleoceanography of the Central Part of the Sea of Okhotsk over the Past 200 ky (on the Basis of Micropaleontological Data),” Okeanologiya 41(5), 755–767 (2001) [Oceanology 41 (5), 723–735 (2001)].Google Scholar
  3. 3.
    M. S. Barash, M. P. Chekhovskaya, N. Bibo, et al., “On the Quaternary Paleoceanology of the Southeastern Part of the Sea of Okhotsk from Lithology and Planktonic Foraminifera,” Okeanologiya 45(2), 273–285 (2005) [Oceanology 45 (2), 257–268 (2005)].Google Scholar
  4. 4.
    I. A. Basov, S. A. Gorbarenko, and T. A. Khusid, “Benthic Foraminifers and the Hydrodynamical Regime of the Sea of Okhotsk: The Last 17 ky,” Dokl. Akad. Nauk 370(5), 681–685 (2000).Google Scholar
  5. 5.
    N. V. Belyaeva and I. I. Burmistrova, “On the Paleohydrology of the Sea of Okhotsk over the Last 60 Thousand Years,” Okeanologiya 37(3), 432–440 (1997) [Oceanology 37 (3), 392–399 (1997)].Google Scholar
  6. 6.
    S. A. Gorbarenko and J. K. Souton, “stratigrafii osadkov vozvyshennosti Akademii nauk SSSR i paleookeanologii Okhotskogo morya v pozdnem pleistotsene,” Dokl. Akad. Nauk 379, 113–117 (2001).Google Scholar
  7. 7.
    A. P. Zhuze, Stratigraficheskie i paleogeograficheskie issledovaniya v severo-zapadnoi chasti Tikhogo okeana (Akad. Nauk SSSR, Moscow, 1962) [in Russian].Google Scholar
  8. 8.
    A. Matul’ and A. Abel’man, “Quaternary Structure of the Sea of Okhotsk from Radiolarian Data,” Dokl. Akad. Nauk 381(3), 259–261 (2001).Google Scholar
  9. 9.
    A. G. Matul’, S. A. Gorbarenko, V. V. Mukhina, and V. Yu. Leskov, “The Quaternary Micropaleontological and Lithophysical Records in the Sediments of the Northern Part of the Sea of Okhotsk,” Okeanologiya 43(4), 583–592 (2003) [Oceanology 43 (4), 551–560 (2003)].Google Scholar
  10. 10.
    V. S. Pushkar’ and M. V. Cherepanova, Diatoms of the Pliocene and Anthropogen of the North Pacific: Stratigraphy and Paleoecology) (Dal’nauka, Vladivostok, 2001) [in Russian].Google Scholar
  11. 11.
    T. A. Khusid, M. S. Barash, N. Biebow, et al., “Late Quaternary Environmental Changes on the Southeastern Slope of the Sea of Okhotsk Inferred from Benthic Foraminifera,” Okeanologiya 45(3), 440–446 (2005) [Oceanology 45 (3), 413–419 (2005)].Google Scholar
  12. 12.
    A. Abelmann, U. Brathauer, R. Gersonde, et al., “Radiolarian-Based Transfer Function for Estimation of Sea Surface Temperatures in the Southern Ocean (Atlantic Sector),” Paleoceanography 14(3), 410–421 (1999).CrossRefGoogle Scholar
  13. 13.
    A. Abelmann and A. Nimmergut, “Radiolarians in the Sea of Okhotsk and Their Ecological Implication for Paleoenvironmental Reconstructions,” Deep-Sea Res. II 52(16–18), 2302–2331 (2005).CrossRefGoogle Scholar
  14. 14.
    KOMEX, Kurile Okhotsk Sea Experiment. Cruise Reports: KOMEX I and II. R/V Professor Gagarinsky, Cruise 22; R/V Akademik Lavrentyev, Cruise 28. GEOMAR Report 82, Ed. by N. Biebow and E. Hütten E. (Kiel, 1999).Google Scholar
  15. 15.
    J. R. Blueford, “Distribution of Quaternary Radiolaria in the Navarin Basin Geologic Province, Bering Sea,” Deep-Sea Res. 30(7A), 763–781 (1983).CrossRefGoogle Scholar
  16. 16.
    B. H. Corliss, “Microhabitats of Benthic Foraminifera within Deep-Sea Sediments,” Nature 314, 435–438 (1985).CrossRefGoogle Scholar
  17. 17.
    B. H. Corliss, D. G. Martinson, and T. Keffer, “Late Quaternary Deep-Ocean Circulation,” Geol. Soc. Am. Bull. 97, 1106–1121 (1986).CrossRefGoogle Scholar
  18. 18.
    A. J. Gooday, “A Response by Benthic Foraminifera to the Deposition of Phytodetritus in the Deep Sea,” Nature 332, 70–73 (1988).CrossRefGoogle Scholar
  19. 19.
    S. A. Gorbarenko, D. Nürnberg, A. N. Derkachev, et al., “Magnetostratigraphy and Tephrochronology of the Upper Quaternary Sediments in the Okhotsk Sea: Implication of Terrigenous, Volcanogenic and Biogenic Matter Supply,” Mar. Geol. 183(1–4), 107–129 (2002).CrossRefGoogle Scholar
  20. 20.
    B. W. Hayward, H. Neil, R. Carter, et al., “Factors Influencing the Distribution Pattern of Recent Deep-Sea Benthic Foraminifera, East of New Zealand, Southwest Pacific Ocean,” Mar. Micropalaeontology 46(1–2), 139–176 (2002).CrossRefGoogle Scholar
  21. 21.
    J. J. Ingle, G. Keller, and R. L. Kolpack, “Benthic Foraminifera Biofacies Sediments and Water Masses of the Southern Peru-Chile Trench Area, Southern Pacific Ocean,” Micropaleontology 26, 113–150 (1980).CrossRefGoogle Scholar
  22. 22.
    F. J. Jorissen, Modern Foraminifera, Ed. by B. K. Sen-Gupta (Kluwer Academic, Dordrecht, 1999), 161–179.Google Scholar
  23. 23.
    A. Kaiser, PhD Thesis (Univ. Kiel, Kiel, Germany, 2001).Google Scholar
  24. 24.
    S. B. Kruglikova, “Distribution of Polycystine Radiolarians from Recent and Pleistocene Sediments of the Arctic-Boreal Zone,” Berichte zur Polarforschung 306, 120–131 (1999).Google Scholar
  25. 25.
    H. Y. Ling, “Radiolaria: Leg 19 of the Deep-Sea Drilling Project,” Initial Reports of the Deep-Sea Drilling Project, 19, Ed. by J. C. Creager et al., U.S. Government Printing Office, Washington, DC, 777–797 (1973).Google Scholar
  26. 26.
    H. Y. Ling, “Radiolarians from the Emperor Seamounts of the Northwest Pacific: Leg 55 of the Deep-Sea Drilling Project,” Initial Reports of the Deep-Sea Drilling Project, 55, Ed. by E. D. Jackson et al., U.S. Government Printing Office, Washington, DC, 365–375 (1980).Google Scholar
  27. 27.
    P. Loubere, “Deep-Sea Benthic Foraminiferal Assemblage Response to a Surface Ocean Productivity Gradient: a Test,” Paleoceanography 6, 193–204 (1991).Google Scholar
  28. 28.
    A. Matul, A. Abelmann, R. Tiedemann, et al., “Late Quaternary Polycystine Radiolarian Datum Events in the Sea of Okhotsk,” J. Geophys. Res. 22(1), 25–32 (2002).Google Scholar
  29. 29.
    A. Matul and A. Abelmann, “Pleistocene and Holocene Distribution of the Radiolarian Amphimelissa setosa Cleve in the North Pacific and North Atlantic: Evidence for Water Mass Movement,” Deep-Sea Res. II 52(16–18), 2351–2364 (2005).Google Scholar
  30. 30.
    K. G. Miller and G. P. Lohman, “Environmental Distribution of Recent Benthic Foraminifera on the Northeast United States Continental Slope,” Geol. Soc. Am. Bull. 93, 202–206 (1982).Google Scholar
  31. 31.
    A. Nimmergut and A. Abelmann, “Spatial and Seasonal Changes of Radiolarian Standing Stocks in the Sea of Okhotsk,” Deep-Sea Res. I 49, 463–493 (2002).CrossRefGoogle Scholar
  32. 32.
    D. Nurnberg and R. Tiedemann, “Environmental Change in the Sea of Okhotsk During the Last 1.1 Million Years,” Paleoceanography 19, A4011 (2004).Google Scholar
  33. 33.
    T. L. Rasmussen, E. Thomsen, S. P. Troelstra, et al., “Millenial-Scale Glacial Variability versus Holocene Stability: Changes in Planktic and Benthic Foraminifera Faunas and Ocean Circulation in the North Atlantic during the Last 60 000 Years,” Mar. Micropaleotol 47, 143–176 (2002).CrossRefGoogle Scholar
  34. 34.
    J. H. Robertson, PhD Thesis (Columbia University, New York, 1975).Google Scholar
  35. 35.
    C. A. Sancetta, “Distribution of Diatom Species in Surface Sediment of the Bering and Okhotsk Seas,” Micropaleontology 28, 221–257 (1982).CrossRefGoogle Scholar
  36. 36.
    S. Tanaka and K. Takahashi, “Late Quaternary Paleoceanographic Changes in the Bering Sea and the Western Subarctic Pacific Based on Radiolarian Assemblages,” Deep-Sea Res. II 52(16–18), 2131–2149 (2005).CrossRefGoogle Scholar
  37. 37.
    E. Thomas, L. Booth, M. Maslin, and N. J. Shackleton, “Northeastern Atlantic Benthic Foraminifera during the Last 45.000 Years: Changes in Productivity Seen from the Bottom Up,” Paleoceanography 10, 545–562 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • M. S. Barash
    • 1
  • A. G. Matul
    • 1
  • G. Kh. Kazarina
    • 1
  • T. A. Khusid
    • 1
  • A. Abelmann
    • 2
  • N. Biebow
    • 2
  • D. Nürnberg
    • 3
  • R. Tiedemann
    • 3
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Wegener Institute for Polar and Marine ResearchBremershafenGermany
  3. 3.Leibnitz Institut für Marine ForschungKielGermany

Personalised recommendations