Oceanology

, Volume 46, Issue 4, pp 465–471 | Cite as

Edge waves under ice cover at a straight coast with a sloping beach

  • S. V. Muzylev
Marine Physics

Abstract

Edge waves in an ice-covered sea at a straight coast with a sloping beach are analyzed within the linearized theory. Such waves propagate along the coast with an amplitude which exponentially decays offshore. The problem is examined without using the hydrostatic assumption. The seawater is considered to be a homogeneous, inviscid, nonrotating, and incompressible fluid. Ice with a uniform thickness is considered, with constant values of density, cylindrical rigidity, Poisson ratio, and compressive stress in the ice. The normal velocity at the bottom is zero; the linearized kinematic and dynamic boundary conditions are satisfied at the lower surface of the ice. Explicit solutions for the edge flexural-gravity waves and the corresponding dispersion equations are obtained and analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gill, Atmosphere-Ocean Dynamics (Academic, New York, 1982; Mir, Moscow, 1986).Google Scholar
  2. 2.
    V. V. Efimov, E. A. Kulikov, A. B. Rabinovich, and I. V. Fain, Ocean Boundary Waves (Gidrometeoizdat, Leningrad, 1985) [in Russian].Google Scholar
  3. 3.
    N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Hydrodynamics (Fizmatgiz, Moscow, 1963; Interscience, New York, 1964), Part 1.Google Scholar
  4. 4.
    A. A. Kurkin and E. N. Pelinovsky, Freak Waves: Facts, Theory, and Modeling (NGTU, Nizhnii Novgorod, 2004) [in Russian].Google Scholar
  5. 5.
    L. D. Landau and E. M. Lifshits, Theory of Elasticity (Nauka, Moscow, 1965; Pergamon Press, Oxford, 1986).Google Scholar
  6. 6.
    P. Le Blond and L. Mysak, Waves in the Ocean: (Elsevier, Amsterdam 1978; Mir, Moscow, 1981).Google Scholar
  7. 7.
    A. Marchenko, “Flexural Gravity Waves,” Trudy IOFAN 56, 65–111 (1999).Google Scholar
  8. 8.
    S. V. Muzylev and A. B. Odulo, “Waves in a Rotating Stratified Fluid off a Sloping Beach,” Dokl. Akad. Nauk SSSR 250(2), 331–335 (1980).Google Scholar
  9. 9.
    Surface and Internal Waves in the Arctic Seas, Ed. by I. V. Lavrenov and E. G. Morozov (Gidrometeoizdat, St. Petersburg, 2002) [in Russian].Google Scholar
  10. 10.
    A. B. Rabinovich, Long Gravity Waves in the Ocean: Trapping, Resonance, and Leaking (Gidrometeoizdat, St. Petersburg, 1993) [in Russian].Google Scholar
  11. 11.
    L. A. Timokhov and D. E. Kheisin, Dynamics of Sea Ice (Mathematical Models) (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  12. 12.
    D. E. Kheisin, Dynamics of Ice Cover (Gidrometeoizdat, Leningrad, 1967) [in Russian; English translation available at US Army Foreign Science and Technology Center, technical translation FSTC-HT-23-485-69].Google Scholar
  13. 13.
    C. Eckart, Surface Waves in Water of Variable Depth (Mar. Phys. Lab., Scripps Inst. Oceanogr, Wave Rep. no. 100, 1951).Google Scholar
  14. 14.
    A. G. Greenhill, “Wave Motion in Hydrodynamics,” Am. J. Math. 9, 62–112 (1887).CrossRefGoogle Scholar
  15. 15.
    P. D. Komar, Beach Processes and Sedimentation (Prentice-Hall, 1998).Google Scholar
  16. 16.
    A. K. Liu and E. Mollo-Christensen, “Wave Propagation in a Solid Ice Pack,” J. Phys. Oceanogr. 18(11), 1702–1712 (1988).CrossRefGoogle Scholar
  17. 17.
    E. Mollo-Christensen, “Edge Waves As a Cause of Ice Rideup Onshore,” J. Geophys. Res. 88(C5), 296–2970 (1983).Google Scholar
  18. 18.
    S. V. Muzylev, S. N. Bulgakov, and M. Duran-Matute, “Edge Capillary-Gravity Waves on a Sloping Beach,” Phys. Fluids 17(4) (2005).Google Scholar
  19. 19.
    J. Pedlosky, Waves in the Ocean and Atmosphere (Springer, 2003).Google Scholar
  20. 20.
    A. S. Peters, “Water Waves over Sloping Beaches and the Solution of a Mixed Boundary Value Problem for Δϕ − k 2ϕ = 0 in a Sector,” Commun. Pure Appl. Math. 5, 87–108 (1952).Google Scholar
  21. 21.
    M. Roseau, “Short Waves Parallel to the Shore over a Sloping Beach,” Commun. Pure Appl. Math. 11, 433–493 (1958).Google Scholar
  22. 22.
    V. A. Squire, J. P. Dugan, P. Wadhams, et al., “Of Ocean Waves and Sea Ice,” Ann. Rev. Fluid Mech. 27, 115–168 (1995).CrossRefGoogle Scholar
  23. 23.
    G. G. Stokes, “Report on Recent Researches in Hydrodynamics,” in Math. and Phys. Papers of G.G. Stokes (University Press, Cambridge, 1880), Vol. 1, pp. 157–187.Google Scholar
  24. 24.
    F. Ursell, “Edge Waves on a Sloping Beach,” Proc. R. Soc. London A214, 79–97 (1952).Google Scholar
  25. 25.
    W. E. Williams, “Waves on a Sloping Beach,” Proc. Philos. Soc. Cambridge 57, 160–165 (1961).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • S. V. Muzylev
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations