Advertisement

Mathematical Notes

, Volume 106, Issue 3–4, pp 514–525 | Cite as

The Riordan–Dirichlet Group

  • E. V. BurlachenkoEmail author
Article
  • 8 Downloads

Abstract

Riordan matrices are infinite lower triangular matrices corresponing to certain operators in the space of formal power series. In the paper, we introduce analogous matrices for the space of Dirichlet formal series. It is shown that these matrices form a group, which is analogous to the Riordan group. An analog of the Lagrange inversion formula is given. As an example of the application of these matrices, a method for obtaining identities analogous to those obtained by using Riordan matrices is considered.

Keywords

Riordan matrices formal Dirichlet series Lagrange series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.W. Shapiro, S. Getu, W. J. Woan and L. C. Woodson, “The Riordan group,” Discrete Appl.Math. 34 (1-3), 229–339 (1991).MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Sprugnoli, “Riordan arrays and combinatorial sums,” Discrete Math. 132, 267–290 (1994).MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Sprugnoli, “Riordan arrays and Abel–Gould identity,” Discrete Math. 142, 213–233 (1995).MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, “On some alternative characterizations of Riordan arrays,” Canad. J. Math. 49 (2), 301–320 (1997).MathSciNetCrossRefGoogle Scholar
  5. 5.
    W. Wang and T. Wang, “Generalized Riordan arrays,” Discrete Math. 308, 6466–6500 (2008).MathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Barry, A Study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms (University College Cork, 2009).Google Scholar
  7. 7.
    D. E. Knuth, “Convolution polynomials,” Mathematica J. 2 (4), 67–78 (1992).Google Scholar
  8. 8.
    A. Sowa, “Factorizing matrices by Dirichlet multiplication,” Linear Algebra Appl. 438 (5), 2385–2393 (2013).MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Sowa, “The Dirichlet Ring and Unconditional Bases in L 2[0, 2π],” Funktsional. Anal. i Prilozhen. 47 (3), 75–81 (2013) [Funct. Anal. Appl. 47 (3), 227–232 (2013)].MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Sowa, “On the Dirichlet matrix operators in sequence spaces,” Appl. Math. (Warsaw) 44 (2), 185–196 (2017).MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. K. Lando, Lectures on Generating Functions (MTsNMO, Moscow, 2007) [in Russian].Google Scholar
  12. 12.
    S. K. Lando, Introduction to Discrete Mathematics (MTsNMO, Moscow, 2012) [in Russian].Google Scholar
  13. 13.
    J. Riordan, Combinatorial Identities (Robert E. Krieger Publishing Co., Huntington, NY, 1979; Nauka, Moscow, 1982).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.“Mathematical Notes,”Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations