Embedding Theorems between Variable-Exponent Morrey Spaces
Article
First Online:
- 10 Downloads
Abstract
In this paper, we study various embedding theorems on variable-exponent Morrey spaces. In particular, we found a criterion characterizing embedding between variable-exponent Morrey spaces.
Kewywords
variable-exponent Lebesgue spaces variable-exponent Morrey spaces equivalent norms embedding theoremsPreview
Unable to display preview. Download preview PDF.
Notes
Funding
This work was supported in part by the First Azerbaijan-Russia Joint Grant Competition (agreement no. EIF-BGM-4-RFTF-1/2017-21 /01/1) and by the Ministry of Education and Science of the Russian Federation (agreement no. 02.a03.21.0008).
References
- 1.C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations,” Trans. Amer. Math. Soc. 43, 126–166 (1938).MathSciNetzbMATHGoogle Scholar
- 2.D. R. Adams, “Morrey Spaces,” in Lecture Notes in Appl. and Numer. Harm. Anal., (Birkhauser, Basel, 2015).Google Scholar
- 3.A. Almeida., J. J. Hasanov, and S. Samko., “Maximal and potential operators in variable exponent Lebesgue spaces,” Georgian Math. J. 1 (2), 195–208 (2008).zbMATHGoogle Scholar
- 4.Y. Mizuta and T. Shimomura., “Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent,” J. Math. Soc. Japan 1 (2), 583–602 (2008).MathSciNetzbMATHGoogle Scholar
- 5.V. Kokilashvili and A. Meskhi., “Boundedness of maximal and singular operators in Morrey spaces with variable exponent,” Arm. J. Math. 1(1), 18–28 (2008).MathSciNetzbMATHGoogle Scholar
- 6.X. Fan., “Variable-exponent Morrey and Campanato spaces,” Nonlinear Anal. 1 (11), 4148–4161 (2010).MathSciNetzbMATHGoogle Scholar
- 7.V. S. Guliyev, J. J. Hasanov, and S. G. Samko, “Boundedness of the maximal, potential and singular operators in the generalized variable-exponent Morrey spaces,” Math. Scand. 107, 285–304 (2010).MathSciNetzbMATHGoogle Scholar
- 8.V. S. Guliyev, J. J. Hasanov, and S. G. Samko, “Maximal, potential and singular operators in the local complementary variable-exponent Morrey type spaces,” J. Math. Anal. Appl. 1 (1), 72–84 (2013).MathSciNetzbMATHGoogle Scholar
- 9.VS. Guliyev and S. G. Samko, “Maximal, potential and singular operators in the generalized variable-exponent Morrey spaces on unbounded sets,” J. Math. Sci. (N. Y.) 1 (2), 228–248 (2013).MathSciNetzbMATHGoogle Scholar
- 10.Y. Mizuta and T. Shimomura., “Weighted Morrey spaces of variable exponent and Riesz potentials,” Math. Nachr. 288 (8-9), 583–602 (2015).MathSciNetzbMATHGoogle Scholar
- 11.A. Meskhi., H. Rafeiro., and M. A. Zaighum, “Interpolation on variable Morrey spaces defined on quasi-metric measure spaces,” J. Funct. Anal. 1 (10), 3946–3961 (2016).MathSciNetzbMATHGoogle Scholar
- 12.W. Orlicz., “Uberkonjugierte exponentenfolgen,” Studia Math. 3, 200–212(1931).zbMATHGoogle Scholar
- 13.H. Nakano., Modulared Semi-Ordered Linear Spaces (Maruzen, Tokyo, 1950).zbMATHGoogle Scholar
- 14.J. Musielak and W. Orlicz., “On modular spaces,” Studia Math. 18, 49–65 (1959).MathSciNetzbMATHGoogle Scholar
- 15.J. Musielak., “Orlicz Spaces and Modular Spaces,” in Lecture Notes in Math. (Springer-Verlag, Berlin, 1983), Vol.1034.Google Scholar
- 16.I. I. Sharapudinov, “Topology of the space C pt) ([0,1])},” Mat. Zametki 1 (4), 613–632 (1979) [Math. Notes} 1 (4), 796–806 (1979)].Google Scholar
- 17.O. Kovacˇik and J. Rakosnik., “On spaces L p(x) and W k, (x),” Czechoslovak Math. J. 1 (41), 592–618 (1991).Google Scholar
- 18.S. Samko., “Convolution type operators inLp(x),” Integral Transform. Spec. Funct. 7(1-2), 123–144(1998).MathSciNetzbMATHGoogle Scholar
- 19.L. Diening., “Maximal function on generalized Lebesgue spaces L p,” Math. Inequal. Appl. 1 (2), 245–253 (2004).zbMATHGoogle Scholar
- 20.D. Cruz-Uribe, A. Fiorenza., and C. Neugebauer., “The maximal function on variable Lp spaces,” Ann. Acad. Sci. Fenn. Math. 28, 223–238 (2003).MathSciNetzbMATHGoogle Scholar
- 21.A. Nekvinda., “Hardy-Littlewood maximal operator on L p(x)(Mn),” Math. Inequal. Appl. 1 (2), 255–266 (2004).MathSciNetzbMATHGoogle Scholar
- 22.V. Kokilashvili and S. Samko., “Weighted boundedness of the maximal, singular and potential operators in variable-exponent spaces,” in Analytic Methods of Analysis and Differential Equations, Proc. Minsk 139–164 (2006) (Cambridge Scientific Publishers, Cambridge, 2008).Google Scholar
- 23.S. Samko., “On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators,” Integral Transform. Spec. Funct. 16(5-6), 461–482 (2005).MathSciNetzbMATHGoogle Scholar
- 24.L. Diening., P. Hasto¨, and A. Nekvinda., “Open problems in variable-exponent Lebesgue and Sobolev spaces,” in Function Spaces, Differential Operators and Nonlinear Analysis, Proc. Conference Held in Milovy, Bohemian-Moravian Uplands, Czech Acad. Sci., Milovy (Czech Republic, 2005) 38–58.Google Scholar
- 25.V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory,” Izv. Akad. Nauk SSSR Ser. Mat. 50 (4), 675–710 (1986) [Math. USSR-Izv. 29 (1), 33–66 (1986)].MathSciNetGoogle Scholar
- 26.M. Ruzˇicka, “Electrorheological Fluids: Modeling and Mathematical Theory,” in Lecture Notes in Math. (Springer-Verlag, Berlin, 2000), Vol. 1748.Google Scholar
- 27.L. Diening., P. Harjulehto., P. Hasto., and M. Ruzˇicka, “Lebesgue and Sobolev Spaces with Variable Exponents,” in Lecture Notes in Math. Springer-Verlag, Berlin, 2011), Vol. 2017.Google Scholar
- 28.A. Almeida and S. Samko., “Embeddings of local generalized Morrey spaces between weighted Lebesgue spaces,” Nonlinear Anal. 164, 67–76 (2017).MathSciNetzbMATHGoogle Scholar
- 29.A. Almeida and S. Samko., “Approximation in Morrey spaces,” J. Funct. Anal. 1 (6), 2392–2411 (2017).MathSciNetzbMATHGoogle Scholar
- 30.M. Ragusa and A. Scapelatto., “Mixed Morrey spaces and their applications to partial differential equations,” Nonlinear Anal. 151, 51–65(2017).MathSciNetzbMATHGoogle Scholar
- 31.I. I. Sharapudinov, “On the basis property of the Haar system in the space L(t)([0,1]) and the principle of localization in the mean,” Mat. Sb. 1 (2), 275–283 (1986) [Math. USSR-Sb. 58, 279–287 (1987)].MathSciNetGoogle Scholar
- 32.A. Nekvinda., “Embeddings between discrete weighted Lebesgue spaces with variable exponent,” Math. Inequal. Appl. 10(1), 255–265 (2007).MathSciNetzbMATHGoogle Scholar
- 33.R. A. Bandaliev, “Embedding between variable-exponent Lebesgue spaces with measures,” Azerb. J. Math. 2(1), 111–117 (2012).MathSciNetzbMATHGoogle Scholar
- 34.O¨. Kulak, “The inclusion theorems for variable-exponent Lorentz spaces,” Turkish J. Math. 1 (3), 605–619 (2016).MathSciNetzbMATHGoogle Scholar
- 35.R. A. Bandaliev, “On an inequality in Lebesgue space with mixed norm and with variable summability exponent,” Mat. Zametki 1 (3), 323–333 (2008) [Math. Notes 1 (3), 303–313 (2008)].MathSciNetzbMATHGoogle Scholar
- 36.D. Cruz-Uribe and A. Fiorenza., Variable Lebesgue Spaces. Foundations and Harmonic Analysis (Birkhauser, Basel, 2013).zbMATHGoogle Scholar
Copyright information
© Pleiades Publishing, Ltd. 2019