Advertisement

Mathematical Notes

, Volume 105, Issue 1–2, pp 153–157 | Cite as

On the Characterizations of Wave Front Sets in Terms of the Short-Time Fourier Transform

  • S. PilipovićEmail author
  • B. PrangoskiEmail author
Short Communications
  • 6 Downloads

Abstract

It is well known that the classical and Sobolev wave fronts were extended to nonequivalent global versions by the use of the short-time Fourier transform. In this very short paper, we give complete characterizations of the former wave front sets in terms of the short-time Fourier transform.

Keywords

wave front set short-time Fourier transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Hörmander, “Fourier integral operators. I,” Acta Math. 127, 79–183 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    L. Hörmander, The Analysis of Linear Partial Differential Operators I, 2nd ed. (Springer–Verlag, Berlin–Heidelberg,New York, 1990).zbMATHGoogle Scholar
  3. 3.
    L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations inMathématiques et Applications (Springer–Verlag, Berlin–Heidelberg, New York, 1997), Vol. 26.Google Scholar
  4. 4.
    A. Córdoba and C. Fefferman, “Wave packets and Fourier integral operators,” Comm. Partial Differential Equations 3, 979–1005 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    K. Gröchenig, Foundations of Time–Frequency Analysis (Birkhäuser Boston, 2001).CrossRefzbMATHGoogle Scholar
  6. 6.
    G. B. Folland, Harmonic Analysis in Phase Space (Ann. ofMath. Studies No. 122, Princeton Univ. Press, Princeton, NJ, 1989).zbMATHGoogle Scholar
  7. 7.
    T. Ōkaji, “A note on the wave packet transforms,” Tsukuba J. Math. 25, 383–397 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    K. Keiichi, M. Kobayashi and S. Ito, “Remark on characterization of wave front set by wave packet transform,” Osaka Journal ofMathematics 54, 209–228 (2017).MathSciNetzbMATHGoogle Scholar
  9. 9.
    A. Martinez, An Introduction to Semiclassical and Microlocal Analysis (Universitext, Springer Verlag, New York, 2002).CrossRefzbMATHGoogle Scholar
  10. 10.
    A. Martinez, S. Nakamura and V. Sordoni, “Analytic wave–front set for solutions to Schrödinger equations,” Adv. Math. 222, 1277–1307 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    R. Melrose, “Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces,” in Spectral and Scattering Theory, Sanda 1992 (Lecture Notes in Pure and Appl. Math., Dekker, New York 1994), Vol. 161, pp. 85–130.Google Scholar
  12. 12.
    R. Mizuhara, “Microlocal smoothing effect for the Schrödinger equation in a Gevrey class,” J. Math. Pures Appl. 91, 115–136 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    S. Nakamura, “Propagation of the homogeneous wave–front set for Schrödinger equations,” Duke Math. J. 126, 349–367 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    L. Robbiano and C. Zuily, Analytic Theory for the Quadratic ScatteringWave Front Set and Application to the Schrödinger Equation (Astérisque Vol. 283, SociétéMathématique de France, 2002).zbMATHGoogle Scholar
  15. 15.
    M. Cappiello and R. Schulz, “Microlocal analysis of quasianalytic Gelfand–Shilov–type ultradistributions,” Complex Var. Elliptic Equ. 61 (4), 538–561 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Coriasco and R. Schulz, “The global wave–front set of tempered oscillatory integrals with inhomogeneous phase functions,” J. Fourier Anal. Appl. 19, 1093–1121 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    L. Rodino and P. Wahlberg, “The Gabor wave front set,” Monatsh. Math. 173, 625–655 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    R. Schulz and P. Wahlberg, “Equality of the homogeneous and the Gabor wave front set,” Comm. Partial Differential Equations 42 (5), 703–730 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    R. Schulz and P. Wahlberg, “Microlocal properties of Shubin pseudodifferential and localization operators,” J. Pseudo–Differ. Oper. Appl. 7, 91–111 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    S. Pilipović, N. Teofanov and J. Toft, “Micro–local analysis in Fourier Lebesgue and modulation spaces. Part I,” J. Fourier Anal. Appl. 17, 374–407 (2011).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia
  2. 2.Department of MathematicsFaculty of Mechanical Engineering-SkopjeSkopjeMacedonia

Personalised recommendations