Advertisement

Mathematical Notes

, Volume 105, Issue 1–2, pp 3–7 | Cite as

Cohomology of Formal Modules over Local Fields

  • S. V. VostokovEmail author
  • I. I. NekrasovEmail author
Article
  • 9 Downloads

Abstract

The structure of the first Galois cohomology groups for the group of points of a formal module in extensions of local fields is studied. A complete description for unramified extensions and classical formal group laws is obtained.

Keywords

formal module over a local field formal group law 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Vostokov and I. I. Nekrasov, “The Lubin–Tate formal module in a cyclic unramified p–extension as a Galois Module,” in Zapiski Nauchnykh Seminarov POMI, Vol. 430: Problems in the Theory of Representation of Theory of Algebras and Groups. Part 27 (POMI, St. Petersburg, 2014), pp. 61–66 [J. Math. Sci. (N. Y. ) 219 (3), 375–379 (2016)].Google Scholar
  2. 2.
    S. V. Vostokov, I. I. Nekrasov, and R. P. Vostokova, “Lutz filtration as a Galois module,” Lobachevskii J. Math. 37 (2), 214–221 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Z. I. Borevich, “On the structure of the reduced multiplicative group of a cyclic extension of a local field,” Izv. Akad. Nauk SSSR Ser. Mat. 24 (2), 145–152 (1960).MathSciNetGoogle Scholar
  4. 4.
    Z. I. Borevich, “The multiplicative group of cyclic p–extensions of a local field,” Trudy Mat. Inst. Steklova, Vol. 80: Algebraic Number Theory and Representation (1965), pp. 16–29 [Proc. Steklov Inst. Math. 80, 15–30 (1965)].MathSciNetzbMATHGoogle Scholar
  5. 5.
    J. Lubin, “One–parameter formal Lie groups over p–adic integer rings,” Ann. ofMath. 80, 464–484 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. Lubin, “Entireness of the endomorphism rings of one–dimensional formal groups,” Proc. Amer. Math. Soc. 52, 8–10 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N. P. Strickland, “Formal schemes and formal groups,” in Homotopy Invariant Algebraic Structures, Contemp. Math. (Amer. Math. Soc., Providence, RI, 1999), Vol. 239, pp. 263–352.Google Scholar
  8. 8.
    M. I. Bashmakov and A. N. Kirillov, “Lutz filtration of formal groups,” Izv. Akad. Nauk SSSR Ser. Mat. 39 (6), 1227–1239 (1975) [Math. USSR–Izv. 9 (6), 1155–1167 (1975)].MathSciNetzbMATHGoogle Scholar
  9. 9.
    M. V. Bondarko, S. V. Vostokov, and I. B. Zhukov, “Additive Galois modules in complete discrete valuation fields,” Algebra Anal. 9 (4), 28–46 (1997) [St. Petersbg. Math. J. 9 (4), 675–693 (1998)].MathSciNetzbMATHGoogle Scholar
  10. 10.
    M. V. Bondarko and S. V. Vostokov, “Additive Galois modules in Dedekind rings. Decomposability,” Algebra Anal. 11 (6), 103–121 (1999) [St. Petersbg. Math. J. 11 (6), 1019–1033 (2000)].MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Chebyshev Laboratory, Department of Mathematics and MechanicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations