Advertisement

Mathematical Notes

, Volume 104, Issue 5–6, pp 927–929 | Cite as

Simple Spectrum of Tensor Products and Typical Properties of Measure-Preserving Flows

  • I. V. KlimovEmail author
Short Communications
  • 21 Downloads

Keywords

ergodic flow typical properties tensor product simple spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Lobanov and V. V. Ryzhikov, Mat. Sb. 209 (5), 62 (2018) [Sb.Math. 209 (5), 660 (2018)].MathSciNetCrossRefGoogle Scholar
  2. 2.
    V. V. Ryzhikov, UspekhiMat. Nauk 61 (4 (370)), 197 (2006) [RussianMath. Surveys 61 (4 (370)), 786 (2006)].CrossRefGoogle Scholar
  3. 3.
    V. V. Ryzhikov, Mat. Zametki 96 (3), 432 (2014) [Math. Notes 96 (3), 416 (2014)].MathSciNetCrossRefGoogle Scholar
  4. 4.
    I. S. Yaroslavtsev, Mat. Zametki 95 (3), 479 (2014) [Math. Notes 95 (3), 438 (2014)].MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. A. Konev and V. V. Ryzhikov, Mat. Zametki 96 (3), 383 (2014) [Math. Notes 96 (3), 360 (2014)].CrossRefGoogle Scholar
  6. 6.
    K. Fraczek, J. Kulaga-Przymus and M. Lemanczyk, J. Anal. Math. 122 (1), 163 (2014).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. I. Bashtanov, Math. Notes 99 (1), 9 (2016).MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. V. Tikhonov, Mat. Zametki 95 (2), 282 (2014) [Math. Notes 95 (2), 253 (2014)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.LomonosovMoscow State UniversityMoscowRussia

Personalised recommendations