Advertisement

Mathematical Notes

, Volume 104, Issue 5–6, pp 886–899 | Cite as

Semigroup Classification and Gelfand–Shilov Classification of Systems of Partial Differential Equations

  • I. V. Melnikova
  • U. A. Alekseeva
Article
  • 2 Downloads

Abstract

Two approaches to systems of linear partial differential equations are considered: the traditional approach based on the generalized Fourier transform and the semigroup approach, under which the system is considered as a particular case of an operator-differential equation. For these systems, the semigroup classification and the Gelfand–Shilov classification are compared.

Keywords

semigroup of operators Fourier transform system of partial differential equations abstract Cauchy problem distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Melnikova, A. I. Filinkov, and U. A. Anufrieva, “Abstract stochastic equations. I. Classical and distributional solutions,” J. Math. Sci. (New York) 111 (2), 3430–3475 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    I. V. Melnikova, Stochastic Cauchy Problems in Infinite Dimensions: Regularized and Generalized Solutions (CRC Press, Boca Raton, FL, 2016).CrossRefzbMATHGoogle Scholar
  3. 3.
    I. M. Gel’fand and G. E. Shilov, Generalized Functions in Some Questions in the Theory of Differential Equations (Fizmatgiz, Moscow, 1958), No. 3 [in Russian].Google Scholar
  4. 4.
    U. A. Anufrieva and I. V. Melnikova, “Peculiarities and regularization of ill-posed Cauchy problems with differential operators,” in Differential Equations and Semigroup Theory (RUDN, Moscow, 2005), Vol. 14, pp. 3–156 [J.Math. Sci. 148 (4), 481–632 (2008)].zbMATHGoogle Scholar
  5. 5.
    K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations (Springer-Verlag, Berlin, 1999).zbMATHGoogle Scholar
  6. 6.
    W. Arendt, Ch. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transform and Cauchy Problems (Birkhäuser Verlag, Basel, 2001).CrossRefzbMATHGoogle Scholar
  7. 7.
    I. V. Melnikova and A. Filinkov, Cauchy Problem: Three Approaches, in Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. (Chapman & Hall/CRC, Boca Raton, FL, 2001), Vol.120.Google Scholar
  8. 8.
    H. O. Fattorini, Cauchy Problem (Addison-Wesley Publ., Reading, MA, 1983).zbMATHGoogle Scholar
  9. 9.
    I. Cioranescu, “Local convoluted semigroups,” in Lecture Notes in Pure and Appl. Math. (Marcel Dekker, New York, 1995), Vol. 168, pp. 107–122.MathSciNetzbMATHGoogle Scholar
  10. 10.
    I. V. Melnikova and U. A. Alekseeva, “Weak regularized solutions to stochastic Cauchy problems,” CMSIM J., No. 1, 49–56 (2014).Google Scholar
  11. 11.
    J. Chazarain, “Problè mes de Cauchy abstraits et applications à quelques problè mes mixtes,” J. Funct. Anal. 7 (3), 386–446 (1971).CrossRefzbMATHGoogle Scholar
  12. 12.
    H. Komatsu, “Ultradistributions. I. Structure theorems and a characterization,” J. Fac. Sci. Univ. Tokyo Sec. IA Math. 20 (1), 25–106 (1973).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Yeltsin Ural Federal UniversityEkaterinburgRussia

Personalised recommendations