Advertisement

Mathematical Notes

, Volume 104, Issue 5–6, pp 767–772 | Cite as

Quasi-Feynman Formulas providing Solutions of Multidimensional Schrödinger Equations with Unbounded Potential

  • I. D. Remizov
  • M. F. Starodubtseva
Short Communications
  • 7 Downloads

Keywords

Schrödinger equation unbounded potential solution of the Cauchy problem formula for a solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. G. Smolyanov, in QP-PQ: Quantum Probab. White Noise Anal., Vol. 30: Quantum Bio-Informatics V (World Sci. Publ., Hackensack, NJ, 2013), pp. 301–313.Google Scholar
  2. 2.
    O. G. Smolyanov, A. G. Tokarev, and A. Truman, J. Math. Phys. 43 (10), 5161 (2002).MathSciNetCrossRefGoogle Scholar
  3. 3.
    I. D. Remizov, J. Funct. Anal. 270 (12), 4540 (2016).MathSciNetCrossRefGoogle Scholar
  4. 4.
    K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations (Springer, New York, 2000).zbMATHGoogle Scholar
  5. 5.
    I. D. Remizov, Mat. Zametki 100 (3), 477 (2016) [Math. Notes 100 (3), 499 (2016)].MathSciNetCrossRefGoogle Scholar
  6. 6.
    I. D. Remizov, Dokl. Ross. Akad. Nauk 476 (1), 17 (2017) [Dokl.Math. 96 (2), 433 (2017)].Google Scholar
  7. 7.
    V. Zh. Sakbaev, Teoret. Mat. Fiz. 191 (3), 473 (2017) [Theoret. and Math. Phys. 191 (3), 886 (2017)].MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic Press, New York, 1975), Vol.2.Google Scholar
  9. 9.
    A. Yu. Ananieva, Mat. Zametki 99 (5), 778 (2016) [Math. Notes 99 (5), 769 (2016)].MathSciNetCrossRefGoogle Scholar
  10. 10.
    T. R. Gadyl’shin, Mat. Zametki 98 (6), 842 (2015) [Math. Notes 98 (6), 900 (2015)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research University Higher School of Economics in Nizhny NovgorodNizhnii NovgorodRussia
  2. 2.Lobachevski State University of Nizhni NovgorodNizhnii NovgorodRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations