Advertisement

Mathematical Notes

, Volume 104, Issue 5–6, pp 758–761 | Cite as

Two Theorems on Isomorphisms of Measure Spaces

  • V. V. KozlovEmail author
  • O. G. Smolyanov
Short Communications
  • 17 Downloads

Keywords

regular measurable space normalized measures space of atoms of a measure signed measures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kuratowski, Topology, Vol. 1 (Academic Press, New York–London; Panstwowe Wydawnictwo Naukowe, Warsaw, 1966; Mir, Moscow, 1966).zbMATHGoogle Scholar
  2. 2.
    V. I. Bogachev and O.G. Smolyanov, Real and Functional Analysis (NITs “Regular and Chaotic Dynamics,” Moscow–Izhevsk, 2011) [in Russian].Google Scholar
  3. 3.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1972; “Introductory Real Analysis,” Dover Publications, Inc., New York, 1975).Google Scholar
  4. 4.
    G. E. Shilov, Mathematical Analysis. Second Special Course (Nauka, Moscow, 1965) [in Russian].Google Scholar
  5. 5.
    A. A. Kirillov and A. D. Gvishiani, Theorems and Problems in Functional Analysis (Nauka,Moscow, 1979; Springer-Verlag, New York–Berlin, 1982).CrossRefzbMATHGoogle Scholar
  6. 6.
    V. I. Bogachev, Foundations of Measure Theory, Vol. 2 (NITs “Regular and Chaotic Dynamics”, Moscow–Izhevsk, 2003; “Measure Theory,” Vol. II. Springer-Verlag, Berlin, 2007).CrossRefGoogle Scholar
  7. 7.
    J. Moser, Trans. Amer. Math. Soc. 120 (2), 286 (1965).MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. E. Greene and K. Shiohama, Trans. Amer. Math. Soc. 255, 403 (1979).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.LomonosovMoscow State UniversityMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations