Advertisement

Mathematical Notes

, Volume 104, Issue 5–6, pp 753–757 | Cite as

Conjugacy of Morse–Smale Diffeomorphisms with Three Nonwandering Points

  • E. V. ZhuzhomaEmail author
  • V. S. Medvedev
Short Communications

Keywords

Morse–Smale diffeomorphism topologically conjugate hyperbolic point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Z. Grines and O. V. Pochinka, Introduction to Topological Classification of Diffeomorphisms on Twoand Three-Dimensional Manifolds (Regulyarnaya i Khaoticheskaya Dinamika, Moscow–Izhevsk, 2011) [in Russian].zbMATHGoogle Scholar
  2. 2.
    S. Aranson, G. Belitsky, and E. Zhuzhoma, Introduction to Qualitative Theory of Dynamical Systems on Closed Surfaces, in Transl. Math. Monogr. (Amer.Math. Soc., Providence, RI, 1996), Vol.153.Google Scholar
  3. 3.
    D. V. Anosov, Smooth Dynamical Systems, Chap. 1: Basic Notions, in Dynamical Systems–1, in Current Problems in Mathematics: Fundamental Directions, Vol. 1, Itogi Nauki i Tekhniki (VINITI, Moscow, 1985), pp. 156–178 [in Russian].Google Scholar
  4. 4.
    S. Smale, Bull. Amer. Math. Soc. 73, 747 (1967).MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. Z. Grines, E. V. Zhuzhoma, and O. V. Pochinka, in Proceedings of the Crimean Autumn School-Symposium, in Contemporary Mathematics. Fundamental Directions (Ross. Univ. Druzhby Narodov, Moscow, 2016), Vol. 61, p. 5 [in Russian].Google Scholar
  6. 6.
    E. V. Zhuzhoma and V. S. Medvedev, in Trudy Mat. Inst. Steklova, Vol. 261: Differential Equations and Dynamical Systems (2008), p. 115 [Proc. Steklov Inst.Math. 261, 112 (2008)].Google Scholar
  7. 7.
    S. Smale, Bull. Amer. Math. Soc. 66, 43 (1960).MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, and O. V. Pochinka, in Trudy Mat. Inst. Steklova, Vol. 271: Differential Equations and Topology. II (2010), p. 111 [Proc. Steklov Inst.Math. 271, 103 (2010)].Google Scholar
  9. 9.
    E. V. Zhuzhoma and V. S. Medvedev, Dokl. Ross. Akad. Nauk 440 (1), 11 (2011) [Dokl. Math. 84 (2), 604 (2011)].Google Scholar
  10. 10.
    E.V. Zhuzhoma and V. S. Medvedev, Mat. Zametki 92 (4), 541 (2012) [Math. Notes 92 (4), 497 (2012)].CrossRefGoogle Scholar
  11. 11.
    E.V. Zhuzhoma and V. S. Medvedev, Mat. Sb. 207 (5), 69 (2016) [Sb.Math. 207 (5), 702 (2016)].MathSciNetCrossRefGoogle Scholar
  12. 12.
    V. Z. Grines, E. V. Zhuzhoma, and V. S. Medvedev, Mat. Zametki 74 (3), 369 (2003) [Math. Notes 74 (3), 352 (2003)].MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Pixton, Topology 16, 167 (1977).MathSciNetCrossRefGoogle Scholar
  14. 14.
    C. Bonatti, V. Z. Grines, V. S. Medvedev, and E. Pekou, Dokl. Ross. Akad. Nauk 377 (2), 151 (2001) [Dokl. Math. 63 (2), 161 (2001)].Google Scholar
  15. 15.
    C. Bonatti, V. Z Grines, V. S. Medvedev, and E. Pekou, in Trudy Mat. Inst. Steklova, Vol. 236: Differential Equations and Dynamical Systems (2008), p. 66 [Proc. Steklov Inst. Math. 236, 58 (2002)].Google Scholar
  16. 16.
    C. Bonatti and V. Grines, J. Dynam. Control Systems 6 (4), 579 (2000).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research University Higher School of Economics in Nizhny NovgorodNizhnii NovgorodRussia

Personalised recommendations