Advertisement

Mathematical Notes

, Volume 104, Issue 5–6, pp 720–726 | Cite as

Global Homological Dimension of Radical Banach Algebras of Power Series

  • Yu. V. SelivanovEmail author
Article
  • 5 Downloads

Abstract

We show that the global dimension of a broad class of radical Banach algebras of power series is at least 3 and obtain applications to cohomology groups.

Keywords

cohomology of Banach algebras homological dimension radical Banach algebra of power series strongly noncomplemented subspace right multiplier module 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ya. Khelemskii, Homology in Banach and Topologial Algebras (Izd.Moskov. Univ., Moscow, 1986) [in Russian].Google Scholar
  2. 2.
    Yu. V. Selivanov, “Homological dimensions of tensor products of Banach algebras,” in Banach Algebras’ 97 (Walter de Gruyter, Berlin, 1998), pp. 441–459.Google Scholar
  3. 3.
    S. B. Tabaldyev, “Additivity of homological dimensions for a class of Banach algebras,” Funktsional. Anal. Prilozhen. 40 (3), 93–95 (2006) [Functional Anal. Appl. 40 (3), 244–246 (2006)].MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Yu.V. Selivanov, “Lower bounds for homological dimensions of Banach algebras,” Mat. Sb. 198 (9), 133–160 (2007) [Sb.Math. 198 (9), 1351–1377 (2007)].MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. Ya. Khelemskii, “Global dimension of a Banach function algebra is different from unity,” Funktsional. Anal. Prilozhen. 6 (2), 95–96 (1972) [Functional Anal. Appl. 6 (2), 166–168 (1972)].Google Scholar
  6. 6.
    A. Ya. Khelemskii, “Smallest values assumed by the global homological dimension of Banach function algebras,” Trudy Sem. Petrovsk. 3, 223–242 (1978) [Am.Math. Soc. Transl. Ser. 2 124, 75–96 (1984)].Google Scholar
  7. 7.
    S. Pott, “An account on the global homological dimension theorem of A. Ya. Helemskii,” Ann. Univ. Sarav. Ser. Math. 9 (3), 155–194 (1999).MathSciNetzbMATHGoogle Scholar
  8. 8.
    A. Ya. Khelemskii, “On a method for calculating and estimating the global homological dimension of Banach algebras,” Mat. Sb. 87 (129) (1), 122–135 (1972) [Math. USSR-Sb. 16 (1), 125–138 (1972)].MathSciNetGoogle Scholar
  9. 9.
    Yu. V. Selivanov, “Biprojective Banach algebras, their structure, cohomologies, and connection with nuclear operators,” Funktsional. Anal. Prilozhen. 10 (1), 89–90 (1976) [Functional Anal. Appl. 10 (1), 78–79 (1976)].zbMATHGoogle Scholar
  10. 10.
    Z. A. Lykova, “A lower estimate of the global homological dimension of infinite-dimensional CCR-algebras,” UspekhiMat. Nauk 41 (1 (247)), 197–198 (1986) [RussianMath. Surveys 41 (1), 233–234 (1986)].zbMATHGoogle Scholar
  11. 11.
    O. Yu. Aristov, “The global dimension theorem for non-unital and certain other separable C*-algebras,” Mat. Sb. 186 (9), 3–18 (1995) [Sb.Math. 186 (9), 1223–1239 (1995)].MathSciNetGoogle Scholar
  12. 12.
    Yu. V. Selivanov, “Coretraction problems and homological properties of Banach algebras,” in Topological Homology (Nova Sci. Publ., Huntington, NY, 2000), pp. 145–199.Google Scholar
  13. 13.
    F. Ghahramani and Yu. V. Selivanov, “The global dimension theorem for weighted convolution algebras,” Proc. Edinburgh Math. Soc. (2) 41 (2), 393–406 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yu. V. Selivanov, “Strongly non-complemented subspaces of Banach spaces and the homological dimension of Banach modules,” Uspekhi Mat. Nauk 49 (1 (295)), 223–224 (1994) [Russian Math. Surveys 49 (1), 245–246 (1994)].zbMATHGoogle Scholar
  15. 15.
    H. G. Dales, Banach Algebras and Automatic Continuity, in London Math. Soc. Monogr. (N. S.) (Clarendon Press, Oxford, 2000), Vol.24.Google Scholar
  16. 16.
    Yu. V. Selivanov, “A problem in the geometry of Banach spaces,” UspekhiMat. Nauk 48 (4 (292)), 237–238 (1993) [Russian Math. Surveys 48 (4), 251–253 (1993)].MathSciNetzbMATHGoogle Scholar
  17. 17.
    P. Wojtaszczyk, Banach Spaces for Analysts, in Cambridge Stud. Adv. Math. (Cambridge Univ. Press, Cambridge, 1991), Vol.25.CrossRefzbMATHGoogle Scholar
  18. 18.
    A. Ya. Khelemskii, Banach and Polynormed Algebras: General Theory, Representations, and Homology (Nauka, Moscow, 1989) [in Russian].Google Scholar
  19. 19.
    Yu. V. Selivanov, “Computing and estimating the global dimension in certain classes of Banach algebras,” Math. Scand. 72, 85–98 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    I. M. Gel’fand, D. A. Raikov, and G. E. Shilov, Commutative Normed Rings (Fizmatgiz, Moscow, 1960) [in Russian].zbMATHGoogle Scholar
  21. 21.
    W. G. Bade, H. G. Dales, and K. B. Laursen, “Multipliers of radical Banach algebras of power series,” in Mem. Amer. Math. Soc. (Amer.Math. Soc., Providence, RI, 1984), Vol. 49, No.303.Google Scholar
  22. 22.
    Yu. V. Selivanov, “Classes of Banach algebras of global dimension infinity,” in Banach Algebras and Their Applications, Contemp. Math. (Amer.Math. Soc., Providence, RI, 2004), Vol. 363, pp. 321–333.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations