Advertisement

Mathematical Notes

, Volume 104, Issue 3–4, pp 417–430 | Cite as

Embedding Theorems for General Multianisotropic Spaces

  • G. A. Karapetyan
  • M. K. Arakelyan
Article
  • 3 Downloads

Abstract

An integral representation and embedding theorems for functions in multianisotropic Sobolev spaces are proved. Unlike in previous works, the general case where the characteristic Newton polyhedron in ℝn has an arbitrary number of vertices is considered.

Keywords

embedding theorems multianisotropic space completely regular polyhedron integral representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Karapetyan, “Integral representation of functions and embedding theorems for multianisotropic spaces on the plane with one anisotropy vertex,” Izv. Nats. Akad. Nauk Armen., Mat. 51 (6), 23–42 (2016) [J. Contemp.Math. Anal., Armen. Acad. Sci. 51 (6), 269–281(2016)].Google Scholar
  2. 2.
    G. A. Karapetyan, “An integral representation and embedding theorems in the plane for multianisotropic spaces,” Izv. Nats. Akad. Nauk Armen.,Mat. 52 (6), 12–24 (2017) [J. Contemp.Math. Anal., Armen. Acad. Sci. 52 (6), 267–275 (2017)].MathSciNetzbMATHGoogle Scholar
  3. 3.
    G. A. Karapetyan, “Integral representation of functions and embedding theorems for multianisotropic spaces in the three–dimensional case,” Eurasian Math. J. 7 (2), 19–37 (2016).MathSciNetGoogle Scholar
  4. 4.
    G. A. Karapetyan, “Integral representation of functions and embedding theorems for n–dimensional multianisotropic spaces with one vertex of anisotropy,” Sibirsk. Mat. Zh. 58 (3), 573–590 (2017) [Siberian Math. J. 58 (3), 445–460 (2017)].MathSciNetGoogle Scholar
  5. 5.
    S. L. Sobolev, “On a theorem of functional analysis,” Mat. Sb. 4 (46) (3), 471–497 (1938) [Amer. Math. Soc. Transl. 34 (2), 39–68 (1963)].Google Scholar
  6. 6.
    S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics (Nauka, Moscow, 1988) [in Russian].zbMATHGoogle Scholar
  7. 7.
    S. M. Nikol’skii, “On a problem of S. L. Sobolev,” Sibirsk. Mat. Zh. 3 (6), 845–851 (1962).Google Scholar
  8. 8.
    K. T. Smith, “Inequalities for formally positive integro–differential forms,” Bull. Amer. Math. Soc. 67, 368–370 (1961).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    V. P. Il’in, “Integral representations of differentiable functions and their application to questions of continuation of functions of classesWlp (G),” Sibirsk. Mat. Zh. 8 (3), 573–586 (1967).Google Scholar
  10. 10.
    O. V. Besov, “On coercivity in nonisotropic Sobolev spaces,” Mat. Sb. 73 (115) (4), 585–599 (1967) [Math. USSR–Sb. 2 (4), 521–534 (1967)].Google Scholar
  11. 11.
    Yu. G. Reshetnyak, “Some integral representations of differentiable functions,” Sibirsk. Mat. Zh. 12 (2), 420–432 (1971).zbMATHGoogle Scholar
  12. 12.
    O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Embedding Theorems (Nauka, Moscow, 1996) [in Russian].zbMATHGoogle Scholar
  13. 13.
    L. Hormander, “On the theory of general partial differential operators,” Acta. Math. 94, 161–248 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. M. Nikol’skii, “On stable boundary values of differentiable functions of several variables,” Mat. Sb. 61 (103) (2), 224–252 (1963).Google Scholar
  15. 15.
    S. V. Uspenskii and B. N. Chistyakov, “On the exit to a polynomial as x → ∞ of solutions of a class of pseudo–differential equations,” in Theory of Cubature Formulas and Applications of Functional Analysis to Problems of Mathematical Physics, Trudy Sem. S. L. Sobolev (Novosibirsk, 1979), Vol. 1, pp. 136–153 [in Russian].Google Scholar
  16. 16.
    G. A. Karapetyan, “On stabilization to a polynomial at infinity of solutions of a class of regular equations,” in Trudy Mat. Inst. Steklov, Vol. 187: Studies in the Theory of Differentiable Functions ofMany Variables and Its Applications. Part 13 (Nauka,Moscow, 1989), pp. 116–129 [in Russian]; [Proc. Steklov Inst.Math. 187, 131–145 (1990)].zbMATHGoogle Scholar
  17. 17.
    C. Carathéodory, “Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen,” Rend. Circ. Mat. Palermo 32, 193–217 (1911).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Russian–Armenian UniversityYerevanArmenia

Personalised recommendations