Mathematical Notes

, Volume 103, Issue 5–6, pp 846–851 | Cite as

Diameter of the Berger Sphere

  • A. V. PodobryaevEmail author
Short Communications


Riemannian geometry Berger sphere geodesic cut time diameter the group SU2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Lablée, Spectral Theory in Riemannian Geometry (EMS, Zürich, 2015).CrossRefzbMATHGoogle Scholar
  2. 2.
    M. Berger, Ann. Scuola Norm. Sup. Pisa (3) 15, 179 (1961).MathSciNetGoogle Scholar
  3. 3.
    N. Eldredge, M. Gordina, and L. Saloff-Coste, Left-Invariant Geometries on SU(2) are Uniformly Doubling, (2017).Google Scholar
  4. 4.
    A. V. Podobryaev and Yu. L. Sachkov, J. Geom. Phys. 110, 436 (2016).MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. A. Agrachev and Yu. L. Sachkov, Control Theory from Geometric Viewpoint (Fizmatlit, Moscow, 2004; Springer-Verlag, Berlin, 2004).CrossRefzbMATHGoogle Scholar
  6. 6.
    L. Bates and F. Fassò, Int. Math. Forum 2 (43), 2109 (2007).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yu. L. Sachkov, Mat. Sb. 197 (4), 123 (2006) [Sb.Math. 197 (4), 595 (2006)].CrossRefGoogle Scholar
  8. 8.
    S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields, in Graduate Studies in Mathematics (MTsNMO,Moscow, 2005; AMS, Providence, RI, 2006), Vol.71.Google Scholar
  9. 9.
    S. G. Krantz and H. R. Parks, Implicit Function Theorem: History, Theory, and Applications (Birkhäuser, Basel, 2001).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ailamazyan Program Systems Institute of Russian Academy of SciencesPereslavl-ZalesskiiRussia

Personalised recommendations