Advertisement

Mathematical Notes

, Volume 103, Issue 3–4, pp 348–356 | Cite as

Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Spaces

  • O. V. Besov
Article

Abstract

An embedding theorem for spaces of functions of positive smoothness defined on irregular domains of n-dimensional Euclidean space in Lebesgue spaces is proved. The statement of the theorem depends on the geometric parameters of the domains of the functions.

Keywords

embedding theorem spaces of functions of positive smoothness irregular domain Lebesgue spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. V. Besov, “Embedding of Sobolev spaces and properties of the domain,” Mat. Zametki 96 (3), 343–349 (2014) [Math. Notes 96 (3), 326–331 (2014)].MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    O. V. Besov, “Spaces of functions of positive smoothness on irregular domains,” Dokl. Akad. Nauk 466 (2), 133–136 (2016) [Dokl.Math. 93 (1), 13–15 (2016)].MathSciNetzbMATHGoogle Scholar
  3. 3.
    O. V. Besov, “Spaces of functions of positive smoothness on irregular domains,” in Trudy Mat. Inst. Steklova, Vol. 293: Function Spaces, Approximation Theory, Related Areas of Mathematical Analysis (MAIK, Moscow, 2016), pp. 62–72 [Proc. Steklov Inst.Math. 293, 56–66 (2016)].Google Scholar
  4. 4.
    D. A. Labutin, “Embedding of Sobolev Spaces on Hölder Domains,” in TrudyMat. Inst. Steklova, Vol. 227: Studies in the Theory of Differentiable Functions of Several Variables and Its Applications. Part 18 (Nauka, Moscow, 1999), pp. 170–179 [Proc. Steklov Inst.Math. 227, 163–172 (1999)].Google Scholar
  5. 5.
    T. Kilpeläinen and J. Malý, “Sobolev inequalities on sets with irregular boundaries,” Z. Anal. Anwendungen 19 (2), 369–380 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    O. V. Besov, “Sobolev’s embedding theorem for a domain with irregular boundary,” Mat. Sb. 192 (3), 3–26 (2001) [Sb.Math. 192 (3), 323–346 (2001)].MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    O. V. Besov, “Spaces of functions of fractional smoothness on an irregular domain,” in Trudy Mat. Inst. Steklova, Vol. 269: Function Theory and Differential Equations (MAIK, Moscow, 2010), pp. 31–51 [Proc. Steklov Inst.Math. 269, 25–45 (2010)].Google Scholar
  8. 8.
    O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Embedding Theorems (Nauka, Moscow, 1996) [in Russian].zbMATHGoogle Scholar
  9. 9.
    O. V. Besov, “Spaces of functions of fractional smoothness on an irregular domain,” 74 (2), 163–183 (2003) [Math. Notes 74 (2), 157–176 (2003)].Google Scholar
  10. 10.
    O. V. Besov, “Function spaces of Lizorkin–Triebel type on an irregular domain,” in Trudy Mat. Inst. Steklova, Vol. 260: Function Theory and Nonlinear Partial Differential Equations (MAIK, Moscow, 2008), pp. 32–43 [Proc. Steklov Inst.Math. 260, 25–36 (2008)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations