Mathematical Notes

, Volume 102, Issue 5–6, pp 610–622 | Cite as

Almost-periodic algebras and their automorphisms

Article
  • 10 Downloads

Abstract

The problem concerning the form of the maximal ideal space of an almost-periodic algebra formed by functions on ℝ m is considered. It is shown that this space is homeomorphic to the topological group dual to the group of frequencies of the algebra under consideration. In the case of a quasiperiodic algebra, the mappings of ℝ n generating automorphisms of the algebra are described. Several specific examples are given and a relation to the theory of quasicrystals is indicated.

Keywords

maximal ideal space almost-periodic algebra dual group automorphism quasicrystal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bohr, Almost-Periodic Functions (Chelsea Publishing Company, New York, NY, 1947; URSS,Moscow, 2009).MATHGoogle Scholar
  2. 2.
    B. M. Levitan and V. V. Zhikov, Almost-Periodic Functions and Differential Equations (Izd. Moskov. Univ.,Moscow, 1978; Cambridge University Press, Cambridge–New York, 1982).MATHGoogle Scholar
  3. 3.
    L. S. Pontryagin, Continuous Groups, 3rd ed. (Nauka, Moscow, 1973; Topological Groups, transl. of the 2nd ed., Gordon and Breach Science Publishers, Inc., New York–London–Paris, 1966).Google Scholar
  4. 4.
    W. Rudin, Fourier Analysis on Groups (Intersience Publ., New York, 1962).MATHGoogle Scholar
  5. 5.
    A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge, 1995; Faktorial,Moscow, 1999).CrossRefMATHGoogle Scholar
  6. 6.
    I. A. Dynnikov and S. P. Novikov, “Topology of quasiperiodic functions on the plane,” UspekhiMat. Nauk 60 (1 (361)), 3–28 (2005) [Russian Math. Surveys 60 (1), 1–26 (2005)].MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    M. I. Rabinovich, A. L. Fabrikant, and L. Sh. Tsimring, “Finite-dimensional spatial disorder,” Uspekhi Fiz. Nauk 162 (8), 1–48 (1992) [Sov. Phys. Uspekhi 35 (8), 629–649 (1992)].CrossRefGoogle Scholar
  8. 8.
    A. B. Antonevich, Linear Functional Equations. Operator Approach(Izd. “Universitetskoe”, Minsk, 1988; Birkhäuser Verlag, Basel, 1996).MATHGoogle Scholar
  9. 9.
    A. Antonevich and A. Lebedev, Functional-Differential Equations. I. C*-Theory, in Pitman Monogr. Surveys Pure Appl. Math. (Longman Sci. and Tech., Harlow, 1994), Vol. 70.Google Scholar
  10. 10.
    G. J. Murphy, “Crossed product of C*-algebras by an endomorphisms,” Integral Equation Operator Theory 24 (3), 298–319 (1996).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    R. Exel, “A new look at the crossed product of a C*-algebra by an endomorphism,” Ergodic Theory Dynam. Systems 23 (6), 1733–1750 (2003).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. B. Antonevich, V. I. Bakhtin, and A. V. Lebedev, “Crossed product of a C*-algebra by an endomorphism, coefficient algebras, and transfer operators,” Mat. Sb. 202 (9), 3–34 (2011) [Sb. Math. 202 (9–10), 1253–1283 (2011)].MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    B. K Kvasnevski and A. V. Lebedev, “Invertible extensions of noninvertible dynamical systems: the C*-method,” Mat. Sb. 199 (11), 45–74 (2008) [Sb.Math. 199 (11–12), 1621–1648 (2008)].MathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Shechtman, L. Blech, D. Gratias and J.W. Cahn, “Mettalic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1954 (1984).CrossRefGoogle Scholar
  15. 15.
    V. I. Arnol’d, Huygens and Barrow, Newton and Hooke. Pioneers in Mathematical Analysis and Catastrophe Theory from Evolvents to Quasicrystals (Nauka, Moscow, 1989; Birkhäuser Verlag, Basel, 1990).MATHGoogle Scholar
  16. 16.
    Le Tu Quoc Thang, S. A. Piunikhin, and V. A. Sadov, “The geometry of quasicrystals,” UspekhiMat. Nauk 48 (1 (289)), 41–102 (1993) [Russ.Math. Surv. 48 (1), 37–100 (1993)].MathSciNetMATHGoogle Scholar
  17. 17.
    A. B. Antonevich and A. N. Glaz, “Quasi-periodic algebras invariant under a linear map,” Dokl. NAN Belarusi 5, 30–35 (2014) [in Russian].MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. B. Antonevich
    • 1
    • 2
  • A. N. Buzulutskaya (Glaz)
    • 2
  1. 1.University of BialystokBialystokPoland
  2. 2.Belarusian State UniversityMinskBelarus

Personalised recommendations