Advertisement

Mathematical Notes

, Volume 102, Issue 5–6, pp 599–609 | Cite as

Fejér and Hermite–Hadamard type inequalities for N-quasiconvex functions

  • S. AbramovichEmail author
  • L. E. Persson
Article
  • 44 Downloads

Abstract

Some new extensions and refinements of Hermite–Hadamard and Fejér type inequalities for functions which are N-quasiconvex are derived and discussed.

Keywords

Fejér inequality Hermite–Hadamard inequality γ-quasiconvexity convexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Dragomir, J. Pečarić, and L. E. Persson, “Some inequalities of Hadamard type,” Soochow J. Math. 21 (3), 335–341 (1995).MathSciNetzbMATHGoogle Scholar
  2. 2.
    S. S. Dragomir, “n-points inequalities of Hermite–Hadamard type for h-convex functions on linear spaces,” Armen. J. Math. 8 (1), 38–57 (2016).MathSciNetzbMATHGoogle Scholar
  3. 3.
    S. Varošanec, “On h-convexity,” J.Math. Anal Appl. 326 (1), 303–311 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    C. P. Niculescu and L. E. Persson, “Old and new on the Hermite–Hadamard inequality,” Real Anal. Exchange 29 (2), 663–685 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications. A Contemporary Approach, in CMS BooksMath. (Springer, New York, 2006), Vol. 23.Google Scholar
  6. 6.
    S. Abramovich, “Hölder, Jensen, Minkowski, Jensen–Steffensen, and Slater–Pečarić inequalities derived through N-quasiconvexity,” Math. Inequal. Appl. 19 (4), 1203–1226 (2016).MathSciNetzbMATHGoogle Scholar
  7. 7.
    S. Abramovich and L. E. Persson, “Some new estimates of the’ Jensen gap’,” J. Inequal. Appl. 2016 (39) (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.University of HaifaHaifaIsrael
  2. 2.Luleå University of TechnologyLuleåSweden
  3. 3.UiT. The Arctic University of NorwayNarvikNorway

Personalised recommendations