Mathematical Notes

, Volume 102, Issue 3–4, pp 455–464 | Cite as

Control of the motion of a triaxial ellipsoid in a fluid using rotors

Article
  • 16 Downloads

Abstract

The motion of a body shaped as a triaxial ellipsoid and controlled by the rotation of three internal rotors is studied. It is proved that the motion is controllable with the exception of a few particular cases. Partial solutions whose combinations enable an unbounded motion in any arbitrary direction are constructed.

Keywords

ideal fluid motion of a rigid body Kirchhoff equations control by rotors gate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Kozlov and S. M. Ramodanov, “Motion of a variable body in an ideal fluid,” Prikl. Mat. Mekh. 65 (4), 592–601 (2001) [J. Appl. Math. Mech. 65 (4), 579–587 (2001)].MATHMathSciNetGoogle Scholar
  2. 2.
    V. V. Kozlov and S. M. Ramodanov, “On the motion of a body with a rigid shell and changing geometry of masses in an ideal fluid,” Dokl. Ross. Akad. Nauk 382 (4), 478–481 (2002) [Dokl. Math. 47 (2), 132–135 (2002)].Google Scholar
  3. 3.
    D. A. Onishchenko and V. V. Kozlov, “Motion in an ideal fluid of a body containing a moving lumped mass inside it,” Prikl. Mat. Mekh. 67 (4), 620–633 (2003) [J. Appl. Math. Mech. 67 (4), 553–564 (2003)].MATHMathSciNetGoogle Scholar
  4. 4.
    G. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik (B. G. Teubner, Leipzig, 1877).MATHGoogle Scholar
  5. 5.
    A. A. Kilin and E. V. Vetchanin, “The control of the motion through an ideal fluid of a rigid body by means of two moving masses,” Nelin. Dinam. 11 (4), 633–645 (2015).CrossRefMATHGoogle Scholar
  6. 6.
    E. V. Vetchanin and A. A. Kilin, “Free and controlled motion of a body with a moving internal mass through a fluid in the presence of circulation around the body,” Dokl. Ross. Akad. Nauk 466 (3), 293–297 (2016) [Dokl. Phys. 61 (1), 32–36 (2016)].MATHGoogle Scholar
  7. 7.
    E. V. Vetchanin and A. A. Kilin, “Control of body motion in an ideal fluid using the internal mass and the rotor in the presence of circulation around the body,” J. Dyn. Control Syst. 23 (2), 435–458 (2017).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to control Chaplygin’s sphere using rotors,” Regul. Chaotic Dyn. 17 (3–4), 258–272 (2012).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    A. V. Borisov, A. A. Kilin and I. S. Mamaev, “How to control the Chaplygin ball using rotors. II,” Regul. Chaotic Dyn. 18 (1–2), 144–158 (2013).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    T. B. Ivanova and E. N. Pivovarova, “Comments on the paper by A. V. Borisov, A. A. Kilin, and I. S. Mamaev “How to control the Chaplygin Ball Using Rotors. II”,” Regul. Chaotic Dyn. 19 (1), 140–143 (2014).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    A. Morinaga, M. Svinin, and M. Yamamoto, “On the iterative steering a rolling robot actuated internal rotors,” in Springer Proc. Math. Stat., Vol. 121: Analysis, Modelling, Optimization, and Numerical Techniques (Springer, Cham, 2015), pp. 205–218.Google Scholar
  12. 12.
    P. K. Rashevskii, “On joining any two points of a nonholonomic space by an admissible line,” Uchen. Zap. Pedag. Inst. Liebkhecht Ser. Fiz.–Mat. 3 (2), 83–94 (1938).Google Scholar
  13. 13.
    A. M. Lyapunov, “On constant helical motions of a rigid body in a fluid,” Soobshch. Kharkov Mat. Obshch., Ser. 2 1 (1-2), 7–60 (1888).Google Scholar
  14. 14.
    P. Holmes, J. Jenkins, and N. E. Leonard, “Dynamics of the Kirchhoff equations. I. Coincident centers of gravity and buoyancy,” Phys. D 118 (3-4), 311–342 (1998).CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    J. L. G. Guirao and J. A. Vera, “Equilibria, stability and Hamiltonian Hopf bifurcation a gyrostat in an incompressible ideal fluid,” Phys. D 241 (19), 1648–1654 (2012).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    C. A. Woolsey and N. E. Leonard, “Stabilizing underwater vehicle motion using internal rotors,” Automatica J. IFAC 38 (12), 2053–2062 (2002).CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    J. Biggs and W. Holderbaum, “Optimal kinematic control of an autonomous underwater vehicle,” IEEE Trans. Automat. Control 54 (7), 1623–1626 (2009).CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    A. V. Borisov and I. S. Mamaev, Dynamics of a Rigid Body. Hamiltonian Methods, Integrability, Chaos (IKI, Moscow–Izhevsk, 2005) [in Russian].MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Borisov
    • 1
    • 2
  • E. V. Vetchanin
    • 2
    • 3
  • A. A. Kilin
    • 2
    • 4
  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow OblastRussia
  2. 2.Udmurt State UniversityIzhevskRussia
  3. 3.Kalashnikov Udmurt State Technical UniversityIzhevskRussia
  4. 4.Krasovskii Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations