Mathematical Notes

, Volume 102, Issue 3–4, pp 455–464

# Control of the motion of a triaxial ellipsoid in a fluid using rotors

Article

## Abstract

The motion of a body shaped as a triaxial ellipsoid and controlled by the rotation of three internal rotors is studied. It is proved that the motion is controllable with the exception of a few particular cases. Partial solutions whose combinations enable an unbounded motion in any arbitrary direction are constructed.

### Keywords

ideal fluid motion of a rigid body Kirchhoff equations control by rotors gate

## Preview

### References

1. 1.
V. V. Kozlov and S. M. Ramodanov, “Motion of a variable body in an ideal fluid,” Prikl. Mat. Mekh. 65 (4), 592–601 (2001) [J. Appl. Math. Mech. 65 (4), 579–587 (2001)].
2. 2.
V. V. Kozlov and S. M. Ramodanov, “On the motion of a body with a rigid shell and changing geometry of masses in an ideal fluid,” Dokl. Ross. Akad. Nauk 382 (4), 478–481 (2002) [Dokl. Math. 47 (2), 132–135 (2002)].Google Scholar
3. 3.
D. A. Onishchenko and V. V. Kozlov, “Motion in an ideal fluid of a body containing a moving lumped mass inside it,” Prikl. Mat. Mekh. 67 (4), 620–633 (2003) [J. Appl. Math. Mech. 67 (4), 553–564 (2003)].
4. 4.
G. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik (B. G. Teubner, Leipzig, 1877).
5. 5.
A. A. Kilin and E. V. Vetchanin, “The control of the motion through an ideal fluid of a rigid body by means of two moving masses,” Nelin. Dinam. 11 (4), 633–645 (2015).
6. 6.
E. V. Vetchanin and A. A. Kilin, “Free and controlled motion of a body with a moving internal mass through a fluid in the presence of circulation around the body,” Dokl. Ross. Akad. Nauk 466 (3), 293–297 (2016) [Dokl. Phys. 61 (1), 32–36 (2016)].
7. 7.
E. V. Vetchanin and A. A. Kilin, “Control of body motion in an ideal fluid using the internal mass and the rotor in the presence of circulation around the body,” J. Dyn. Control Syst. 23 (2), 435–458 (2017).
8. 8.
A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to control Chaplygin’s sphere using rotors,” Regul. Chaotic Dyn. 17 (3–4), 258–272 (2012).
9. 9.
A. V. Borisov, A. A. Kilin and I. S. Mamaev, “How to control the Chaplygin ball using rotors. II,” Regul. Chaotic Dyn. 18 (1–2), 144–158 (2013).
10. 10.
T. B. Ivanova and E. N. Pivovarova, “Comments on the paper by A. V. Borisov, A. A. Kilin, and I. S. Mamaev “How to control the Chaplygin Ball Using Rotors. II”,” Regul. Chaotic Dyn. 19 (1), 140–143 (2014).
11. 11.
A. Morinaga, M. Svinin, and M. Yamamoto, “On the iterative steering a rolling robot actuated internal rotors,” in Springer Proc. Math. Stat., Vol. 121: Analysis, Modelling, Optimization, and Numerical Techniques (Springer, Cham, 2015), pp. 205–218.Google Scholar
12. 12.
P. K. Rashevskii, “On joining any two points of a nonholonomic space by an admissible line,” Uchen. Zap. Pedag. Inst. Liebkhecht Ser. Fiz.–Mat. 3 (2), 83–94 (1938).Google Scholar
13. 13.
A. M. Lyapunov, “On constant helical motions of a rigid body in a fluid,” Soobshch. Kharkov Mat. Obshch., Ser. 2 1 (1-2), 7–60 (1888).Google Scholar
14. 14.
P. Holmes, J. Jenkins, and N. E. Leonard, “Dynamics of the Kirchhoff equations. I. Coincident centers of gravity and buoyancy,” Phys. D 118 (3-4), 311–342 (1998).
15. 15.
J. L. G. Guirao and J. A. Vera, “Equilibria, stability and Hamiltonian Hopf bifurcation a gyrostat in an incompressible ideal fluid,” Phys. D 241 (19), 1648–1654 (2012).
16. 16.
C. A. Woolsey and N. E. Leonard, “Stabilizing underwater vehicle motion using internal rotors,” Automatica J. IFAC 38 (12), 2053–2062 (2002).
17. 17.
J. Biggs and W. Holderbaum, “Optimal kinematic control of an autonomous underwater vehicle,” IEEE Trans. Automat. Control 54 (7), 1623–1626 (2009).
18. 18.
A. V. Borisov and I. S. Mamaev, Dynamics of a Rigid Body. Hamiltonian Methods, Integrability, Chaos (IKI, Moscow–Izhevsk, 2005) [in Russian].

## Authors and Affiliations

• A. V. Borisov
• 1
• 2
• E. V. Vetchanin
• 2
• 3
• A. A. Kilin
• 2
• 4
1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow OblastRussia
2. 2.Udmurt State UniversityIzhevskRussia
3. 3.Kalashnikov Udmurt State Technical UniversityIzhevskRussia
4. 4.Krasovskii Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesEkaterinburgRussia