Mathematical Notes

, Volume 101, Issue 5–6, pp 1068–1073 | Cite as

On the number of singular points of terminal factorial Fano threefolds

Short Communications

Keywords

Fano threefold terminal singularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Namikawa, J. Algebraic Geom. 6 (2), 307 (1997).MathSciNetGoogle Scholar
  2. 2.
    Yu. Prokhorov, J. Algebraic Geom. 21 (3), 563 (2012).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Yu. Prokhorov and C. Shramov, Jordan Constant for Cremona Group of Rank 3, arXiv: 1608.00709 (2016).MATHGoogle Scholar
  4. 4.
    Yu. Prokhorov and C. Shramov, p-Subgroups in the Space Cremona Group, arXiv: 1610.02990 (2016).MATHGoogle Scholar
  5. 5.
    V. V. Przhiyalkovskii and K. A. Shramov, in Trudy Mat. Inst. Steklov., Vol. 294: Contemporary Problems of Mathematics, Mechanics, and Mathematical Physics. II (MAIK, Moscow, 2016), pp. 167–190 [Proc. Steklov Inst. Math. 294, 154 (2016)].Google Scholar
  6. 6.
    Yu. Prokhorov, Adv. Geom. 13 (3), 389 (2013).MathSciNetGoogle Scholar
  7. 7.
    Yu. G. Prokhorov, Izv. Ross. Akad. Nauk, Ser. Mat. 79 (4), 159 (2015) [Izv. Math. 79 (4), 795 (2015)].MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. A. Iskovskikh and Yu. G. Prokhorov, in Encyclopaedia Math. Sci., Vol. 47: Algebraic Geometry. V (Springer, Berlin, 1999), pp. 1–245.Google Scholar
  9. 9.
    V. Przyjalkowski and C. Shramov, Int. Math. Res. Not. 2015 (21), 11302 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Cutkosky, Math. Ann. 280 (3), 521 (1988).MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. W. Cutrone and N. A. Marshburn, Cent. Eur. J. Math. 11 (9), 1552 (2013).MathSciNetGoogle Scholar
  12. 12.
    P. Jahnke, Th. Peternell, and I. Radloff, Cent. Eur. J. Math. 9 (3), 449 (2011).MathSciNetCrossRefGoogle Scholar
  13. 13.
    K. Takeuchi, Weak Fano Threefolds with Del Pezzo Fibration, arXiv: 0910.2188 (2009).Google Scholar
  14. 14.
    I. Cheltsov, V. Przyjalkowski, and C. Shramov, Which Quartic Double Solids are Rational? arXiv: 1508.07277 (2015).MATHGoogle Scholar
  15. 15.
    A. Kuznetsov, Yu. Prokhorov, and C. Shramov, Hilbert Schemes of Lines and Conics and Automorphism Groups of Fano Threefolds, arXiv: 1605.02010 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations